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INTRODUCTION

Infection with the protozoan parasite Toxoplasma gondii has a
worldwide distribution. This obligate intracellular parasite can

infect humans as well as virtually all warm-blooded animals, in-
cluding mammals and birds. Since its first description in the
gondi, a rodent from North Africa, by Nicolle and Manceaux in
1908 (239), the parasite was progressively recognized as the agent
of a widespread zoonosis. However, its entire life cycle was defin-
itively understood only in the late 1960s (95, 133, 176), with the
discovery of the central role of the cat as a definitive host harbor-
ing the sexual parasitic cycle and spreading oocysts through feces.
In the same period of time, it was classified in the coccidian sub-
class (133), phylum Apicomplexa, and the infectivity of the three
parasitic stages (tachyzoite, cyst, and oocyst) was well character-
ized.

The true importance of toxoplasmosis in humans remained
unknown until the first reports of cases of congenital toxoplasmo-
sis (299). The history of clinical toxoplasmosis and the wide spec-
trum of this disease revealed over the years were reviewed by Weiss
and Dubey in 2009 (336). The growing role of Toxoplasma infec-
tion in immunocompromised patients was acknowledged in the
mid-1970s, and the concept of the reactivation of infection was
thereafter extensively explored by immunologists. During the last
decade, the development of new genotyping tools and the multi-
plication of field studies have led to breakthroughs in the compre-
hension of the phylogenetic evolution of T. gondii in the world
(222), and recent advances in our knowledge of the particular
virulences associated with some genotypes have been achieved
(291).

In this paper, we provide an updated review of data on toxo-
plasmosis, with a focus on the epidemiological and diagnostic an-
gles, putting them into perspective with current knowledge of par-
asite genotypes.

BIOLOGY OF THE PARASITE

Three Parasitic Stages

There are three infective stages of T. gondii: a rapidly dividing
invasive tachyzoite, a slowly dividing bradyzoite in tissue cysts,
and an environmental stage, the sporozoite, protected inside an
oocyst. These infective stages are crescent-shaped cells, approxi-
mately 5 �m long and 2 �m wide, with a pointed apical end and a
rounded posterior end. They are limited by a complex membrane,
named the pellicle, closely associated with a cytoskeleton involved
in the structural integrity and motility of the cell. They possess a

nucleus, a mitochondrion, a Golgi complex, ribosomes, an endo-
plasmic reticulum, and a multiple-membrane-bound plastid-like
organelle called the apicoplast, the result of a possible acquisition
by the parasite via a secondary endosymbiosis of a free-living red
alga (285). As for other members of the phylum Apicomplexa, they
concentrate in their apical part a specialized cytoskeletal structure
(the conoid, involved in cell invasion) and numerous secretory
organelles (rhoptries [ROPs], dense granules, and micronemes).
More details were reported elsewhere previously (6, 101, 335).

Tachyzoites are the dissemination form (Fig. 1A). They are able
to invade virtually all vertebrate cell types, where they multiply in
a parasitophorous vacuole.

Bradyzoites result from the conversion of tachyzoites into a
slow-dividing stage and form tissue cysts (Fig. 1B). These cysts are
more or less spheroid in brain cells or elongated in muscular cells.
They vary in size from 10 �m for the younger cysts, containing
only two bradyzoites, to up to 100 �m for the older ones, contain-
ing hundreds or thousands of densely packed bradyzoites. The
cyst wall consists of a limiting membrane presenting numerous
invaginations and an underlying layer of electron-dense granular
material (124). Bradyzoites have a latent metabolism, well adapted
to long-term survival. Cysts remain intracellular throughout their
life span. The death of the host cell may trigger the disruption of
the cyst wall and the consequent liberation of bradyzoites. The
resistance of bradyzoites to the acid pepsin (1- to 2-h survival into
pepsin-HCl) allows their transmission through ingestion.

Sporozoites are located in mature oocysts. Oocysts are 12- to
13-�m ovoid structures that after sporulation contain two sporo-
cysts, each containing four sporozoites (Fig. 1C and D). The
oocyst wall is an extremely robust multilayer structure protecting
the parasite from mechanical and chemical damages. It enables
the parasite to survive for long periods, up to more than a year, in
a moist environment (213).

Life Cycle of T. gondii

T. gondii is a tissue-cyst-forming coccidium functioning in a prey-
predator system that alternates between definitive (sexual repro-
duction) and intermediate (asexual replication) hosts. It is unique
among this group because it can be transmitted not only between
intermediate and definitive hosts (sexual cycle) but also between
intermediate hosts via carnivorism (asexual cycle) or even be-
tween definitive hosts. The parts of the sexual and asexual cycles
and transmission dynamics in a given environment vary accord-
ing to physical characteristics and according to the structures of
both intermediate and definitive host populations (4).
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Sexual reproduction occurs only in felids (domestic and wild
cats). After the ingestion of cysts present in tissues of an interme-
diate host, the cyst wall is destroyed by gastric enzymes. Brady-
zoites settle within enterocytes, where they undergo a self-limiting
number of asexual multiplications, characterized by the develop-
ment of merozoites within schizonts (Fig. 2) (90). This first step is
followed by sexual development, with the formation of male and
female gametes (gametogony) (123). After fertilization, oocysts
formed within enterocytes are liberated by the disruption of the
cell and excreted as unsporulated forms in cat feces (Fig. 2). The
process of sporogony occurs after a few days in the external envi-
ronment. It implies a meiotic reduction and morphological
changes leading to the formation of a sporulated oocyst with two
sporocysts, each containing four haploid sporozoites. The shed-
ding of oocysts begins 3 to 7 days after the ingestion of tissue cysts
and may continue for up to 20 days. Infected cats can shed more
than 100 million oocysts in their feces (95, 180). They can infect a
wide range of intermediate hosts, virtually all warm-blooded ani-
mals, from mammals to birds, when ingested with food or water.
Oocysts are also infective for cats although less efficiently.

Within intermediate hosts, the parasite undergoes only asexual
development. After oocyst ingestion, sporozoites are liberated.
They penetrate the intestinal epithelium, where they differentiate
into tachyzoites. Tachyzoites rapidly replicate by endodyogeny

inside any kind of cell and disseminate throughout the organism.
As a result of the conversion from tachyzoite to bradyzoite, tissue
cysts arise as early as 7 to 10 days postinfection and may remain
throughout life in most hosts, predominantly in the brain or mus-
culature.

Upon the ingestion of these tissue cysts by an intermediate host
through raw or undercooked meat, cysts are ruptured as they pass
through the digestive tract, causing the release of bradyzoites. The
bradyzoites will infect the intestinal epithelium of the new host
and differentiate back into the rapidly dividing tachyzoite stage for
dissemination throughout the body (Fig. 2).

In addition, if the acute phase occurs during pregnancy, the
parasite can cross the placenta and infect the fetus (congenital
transmission). A role for this vertical transmission in maintaining
high levels of infection in some species has been suggested (112).

Mechanism of Cell Invasion

T. gondii is remarkable in its ability to invade a wide variety of host
cells. Invasion is an active process relying on parasite motility and
the sequential secretion of proteins from secretory organelles, the
micronemes, the rhoptries, and the dense granules.

Attachment to the host cell membrane is a prerequisite for in-
vasion. It requires the calcium-dependent secretion of adhesins
from micronemes, such as the microneme protein MIC2, which
recognize host cell receptors and promote parasite reorientation
and attachment. Cell invasion relies on a complex interaction be-
tween the host cell surface and the parasite, a process called gliding
motility, an intricate linear motor system promoted by actin-my-
osin interactions and dynamic rearrangements of the parasite cy-
toskeleton (50). Entry is a rapid process (15 to 30 s) distinct from
currently known host endocytic events. Toxoplasma forms a tight
association between its apical end and the host cell membrane,
called the moving junction. This moving junction moves from the
apical end to the posterior end of the parasite, leading to the in-
ternalization of the parasite into a parasitophorous vacuole (PV).
The establishment of this moving junction around the invading
parasite requires the distribution over the entire surface of the
parasite of an apical membrane antigen (AMA1), also secreted by
micronemes, and the secretion of rhoptry (ROP) neck proteins
(RONs) inserted into the host cell membrane (108). The forma-
tion of the nascent parasitophorous vacuole membrane (PVM)
requires the secretion of proteins from the ROPs. In recent years,
a major role for the ROP2 family proteins has been recognized. Of
these proteins, ROP18 is associated with the cytosolic face of the
PVM and exerts protein kinase activity, which has a profound
effect on parasite growth and virulence (116), and ROP16 is able
to manipulate host gene expression, affecting interleukin secre-
tion (197).

Besides ROP proteins, dense granular proteins also contribute
to the formation of the PVM during the first hour following inva-
sion. Most host transmembrane proteins are stripped from the
PVM during the invasion process; this process modifies biochem-
ical characteristics of the PVM and prevents fusion with lysosomes
or any cytoplasmic vesicle. Dense-granule secretions also support
the development of a complex network of membrane tubules that
develop from the PVM and extend into the vacuolar lumen (224).
This network is supposed to have a role in developing exchanges
between the parasite and the host cell, bringing in nutrients from
the host cell cytosol or exporting proteins or lipids from the par-
asite toward the PVM or the host cell. The PVM is also closely

FIG 1 Biologic stages of Toxoplasma gondii. Shown are microscopic examina-
tions of tachyzoites in a bronchoalveolar lavage fluid sample stained with Gi-
emsa (A) (magnification, �500), a cyst in the brain of an infected mouse (B)
(magnification, �500), and unsporulated (C) and sporulated (D) oocysts
(magnification, �1,000).
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associated with host cell mitochondria, which contribute to para-
site metabolism. Within the PV, tachyzoites divide during a 6- to
9-h cycle, by a process of endodyogeny, leading to the formation of
two daughter cells within each mother cell. They exit the cell usu-
ally after 64 to 128 parasites have accumulated in the PV (36).
Egress from the cell is an active process dependent upon a rise in
the calcium concentration after the release from intracellular
stores (301).

PREVALENCE AND IMPORTANCE OF TOXOPLASMOSIS IN
THE WORLD

Prevalence in Animals

Methods for screening. The detection of chronic infection with T.
gondii in animals relies primarily on serological assays. There is no
gold standard test for the screening of the large diversity of Toxo-
plasma host species. The sensitivity and specificity of the tech-
niques depend on the animal species, and cutoff values are diffi-
cult to establish because reference sera from experimentally
infected animals are lacking. Even when these sera are available for
one species, they may not reflect natural conditions, as experi-
mental animals are often infected with high doses and sometimes
through unnatural routes, which may induce excessively high an-
tibody titers. Currently, the modified agglutination test (MAT)
seems to be the test most adapted to a large number of species (93),
but specific enzyme-linked immunosorbent assays (ELISAs) have
been developed for some domestic animal species. These serolog-
ical tests were first developed for serum analysis but have been
adapted for the analysis of meat juice for evaluating the risk of

Toxoplasma in meat (105, 162). The analysis of meat juice is less
sensitive but is the only means to detect Toxoplasma antibodies
when sera are not available (retail stores).

Serological surveys alone do not provide information about
the prevalence of viable parasites. Indeed, Toxoplasma strains have
been isolated from seronegative animals (96), and on the other
hand, the direct detection of the parasite is frequently negative in
seropositive animals (243). One of the most sensitive means of
detecting cysts in animal tissues relies on bioassays. For mouse
bioassays, tissues are digested in vitro with acid, pepsin or trypsin,
prior to inoculation into mice, which are further monitored for
the development of illness and seroconversion (92). Bioassays
with cats are more sensitive but also more expensive than the
mouse bioassay. This assay consists of feeding the cat with tissue
samples and then examining the feces for the shedding of oocysts
from 3 to 14 days postinoculation (93). These bioassays are labo-
rious and time-consuming techniques that are poorly adapted to
the screening of large numbers of samples. Therefore, PCR-based
methods have been developed to detect parasite DNA in meat
samples. However, these methods are in fact less sensitive than
bioassays due to the inhomogeneous distribution of tissue cysts
and due to the small size of the tissue sample used (usually 50 mg
of sample for PCR assays, versus 50 to 500 g for bioassays). In an
attempt to increase the sensitivity of detection by PCR, a method
based on sequence-specific magnetic capture of T. gondii DNA
followed by DNA amplification has been developed. It allowed the
testing of 100-g tissue sample homogenates, with an estimated
detection limit of approximately 1 cyst per 100 g (242).

FIG 2 Life cycle of Toxoplasma gondii. Shown are the biology, infection, and replication of the three infective stages of the parasites in their respective hosts.
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Wildlife. Toxoplasma infection has been described for more
than 350 host species, mammals and birds, with the vast majority
of them living in a wild environment (114, 209, 316). The contam-
ination of environment, and, hence, of intermediate wild hosts, is
linked to the shedding of oocysts by felids, either stray or domestic
cats close to farms or wild felid species. Evidence of infection
(mostly by serological detection and more rarely by oocyst or tis-
sue cyst detection) has been proven for 31 of the 39 felid species in
the world (93). The seroprevalence in wild felids is usually very
high and may reach up to 100%. The prevalence in the interme-
diate hosts depends on the presence of these felids in their envi-
ronment. However, the processes promoting infection in wild-
animal populations are highly complex and involve the
interaction of physical, biological, and ecological characteristics,
including (i) climate characteristics, where areas with dry and hot
climates, unfavorable for oocyst survival, are associated with
lower prevalences in wild animals, whereas the highest preva-
lences of infection in wildlife are found in humid tropical coun-
tries; (ii) the susceptibility of the host species to Toxoplasma in-
fection (some species may be resistant or may spontaneously clear
infection); (iii) the size and weight of the animal species, which are
usually correlated with the duration of life, thereby influencing the
chance of infection and partly explaining the low rate of infection
(only 1 to 5%) of small rodents (Mus musculus) in most survey
studies (5, 67); and (iv) the diet and feeding behavior of the host
species, where the prevalence of infection is often lower in herbi-
vores than in omnivores and carnivores due to the cumulative
efficacy of the predator-prey cycle of T. gondii (306). Among wild
mammals from the Amazonian forest (French Guiana), terrestrial
mammals were significantly more exposed to T. gondii than arbo-
real mammals as a result of ground-dwelling behavior and/or car-
nivory (87). In the Northern Hemisphere, a high prevalence was
found in carnivorous (black bears and red foxes) or in omnivo-
rous species, such as wild boars, which are exposed to infection
through the ingestion of both oocysts and tissue cysts. An ecolog-
ical approach to studying the circulation of the parasite in wildlife
includes studies of factors such as the migration of birds, fragmen-
tation of the landscape (by rivers, roads, cultivated areas, and vil-
lages, etc.), dispersion of oocysts, or predation behavior of the
different felid species in various environments.

Special interest has recently been focused on marine mammals.
A variety of marine mammals (sea otters, dolphins, seals, and
walruses) has been found to be infected, with prevalences ranging
from 47 to 100%. These marine mammals serve as sentinels of
environmental contamination by oocysts via freshwater runoff
into the marine ecosystem (60).

Meat-producing animals: differences according to breeding.
The risk of Toxoplasma infection in livestock has been consider-
ably reduced by the use of intensive farm management with ade-
quate measures of hygiene and confinement, such as keeping
meat-producing animals indoors throughout their lifetimes;
keeping the sheds free of rodents, birds, and cats; and feeding
meat-producing animals on sterilized food (191). This has led to a
marked drop in the T. gondii seroprevalence in pork. Seropreva-
lence in slaughter pigs is now �5% in most industrialized coun-
tries (99). In 2005, a nationwide survey of T. gondii in meat
(chicken, beef, and pork) obtained from retail stores in the United
States found a seroprevalence of only 0.57% in pork (97). This
declining seroprevalence in pigs has been found in every industri-
alized country, but the recent trend of “animal-friendly” or “or-

ganic” outdoor production systems increases the exposure of pigs
to a contaminated environment (119a, 316).

Prevalences in poultry also vary markedly according to pro-
duction systems. Toxoplasma infection in industrialized poultry
farms is practically absent, while the seroprevalence in free-range
or backyards chickens is usually high, up to 100%. Due to their
habit of feeding close to the ground, free-range chickens are in-
deed considered a good indicator of environmental contamina-
tion by Toxoplasma oocysts (93).

The prevalence in other meat-producing animals, such as
sheep, goats, and horses, has not changed over time, because the
source of infection of these herbivorous animals kept on pastures
has remained unchanged. In farmed sheep, the seroprevalence in
Europe is logically correlated with age, increasing from lambs (17
to 22%) to adult (65 to 89%) (162). Viable T. gondii organisms
have been recovered from as many as 67% of sheep samples.
Sheep, rather than pigs, are the main source of infected meat in
Southern European countries. Rates of seropositivity reported for
goats vary from 4 to 77% (105, 316), while they are generally lower
in horses (93).

Toxoplasma infection in cattle is still a matter of debate. The
reported seropositivity of cattle ranges from 2 to 92% (316).
Higher infection rates are observed in calves during their first
grazing season, indicating that calves become infected after expo-
sure to Toxoplasma on pastures (243). Seropositivity rates decline
in older animals. Despite high rates of seropositivity reported in
some studies, the parasite has been detected very rarely in tissues
of adult cows and in aborted fetuses (99). For example, of 2,094
samples of retail beef meat in the United States, no Toxoplasma
infection was detected (97). This finding means that seropreva-
lence cannot be used as an indicator of the number of cattle car-
rying infectious parasites. The resistance of cattle to Toxoplasma
infection and the ability of these animals to clear the infection have
been suggested (107, 243).

Prevalence of Infection in Humans

It is generally assumed that approximately 25 to 30% of the
world’s human population is infected by Toxoplasma (230). Actu-
ally, the prevalences vary widely between countries (from 10 to
80%) and often within a given country or between different com-
munities in the same region (246). Low seroprevalences (10 to
30%) have been observed in North America, in South East Asia, in
Northern Europe, and in Sahelian countries of Africa. Moderate
prevalences (30 to 50%) have been found in countries of Central
and Southern Europe, and high prevalences have been found
Latin America and in tropical African countries.

As for animals, many factors can affect seroprevalence in hu-
mans. Climatic factors affecting the survival of oocysts in the en-
vironment and, hence, infection rates in meat-producing animals
play a major role. Higher prevalences are classically observed for
tropical countries with a humid and warm climate, and con-
versely, lower prevalences are found for arid countries or for
colder countries, but anthropogenic factors explain a large part of
the variations in human seroprevalence, including dietary habits
(method of cooking meat, hand washing, kinds of meat or vege-
tables consumed, and vegetable cleaning, etc.); economic, social,
or cultural habits; quality of water; and sanitation coverage. Sero-
prevalence increases with age, but the rate of acquisition of infec-
tion in relation to age varies according to the country and socio-
economic level. Near-maximal seroprevalence may be reached in
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childhood in populations living under poor-hygiene conditions,
probably linked to telluric or waterborne contamination by oocyst
ingestion. This points toward water as an important source of
human infection in areas where humans use unfiltered surface
water for consumption and probably also in areas where there is
contact with freshwater, for instance, for recreation (20, 117, 180).
As an example, in a city located in the northern Rio de Janeiro state
(Brazil), the age-adjusted seroprevalence was 84% for the group of
the lower socioeconomic level, compared to seroprevalences of
62% and 23% for the groups of the middle and upper socioeco-
nomic levels, respectively (20). Most persons (up to 84%) in the
population of the lower socioeconomic level were infected by the
age of 15 years, whereas infection was acquired mostly after the age
of 20 years in the population of the upper socioeconomic level
(from about 20% for the age group of 20 to 29 years to 70% for the
age group of 40 to 49 years). In a multivariate risk factor analysis,
this was attributed to differences in water supply, with the poorest
populations living in areas supplied with unfiltered water. These
different patterns of Toxoplasma acquisition according to socio-
economic levels may be more relevant in underdeveloped tropical
countries, but in the United States, Toxoplasma infection was also
considered an infection associated with poverty (174). The overall
seroprevalence (U.S.- and foreign-born individuals combined)
was higher among non-Hispanic black persons and Mexican
Americans than among non-Hispanic white persons (181). Logi-
cally, increased socioeconomic levels, together with an improve-
ment of hygienic conditions, changes in farming systems, the con-
sumption of frozen meat, and the feeding of cats with sterilized
food, have led to a continuous decrease of the seroprevalence in
most industrialized countries over the last decades. In the United
States, a national survey found a decrease in the age-adjusted T.
gondii prevalence in U.S.-born persons aged 12 to 49 years, from
14.1% in 1988 to 1994 to 9% in 1999 to 2004 (181). In France, the
seroprevalences in pregnant women were about 80% in the early
1960s, around 66% in the 1980s, 54% in 1995, and 44% in 2003,
while at the same time, the average age of pregnant women in-
creased (328). This declining seroprevalence has been observed in
all areas where it was studied in Europe. For example, in The
Netherlands, the seroprevalence decreased from 35.2% in 1995 to
1996 to 18.5% in 2006 to 2007 in women of reproductive age
(170).

HOW DO HUMANS BECOME INFECTED?

The majority of horizontal transmissions to humans is caused
either by the ingestion of tissue cysts in infected meat or by the
ingestion of soil, water, or food contaminated with sporulated
oocysts derived from the environment or, less frequently, directly
from feline feces (Fig. 3). The relative importance of transmissions
via tissue cysts versus oocysts in a given population is unknown,
except in the case of outbreaks with a well-defined source of in-
fection. Until now, only risk factor studies gave an indication of
the predominant route of transmission in a given population.
However, in these epidemiological studies, risk factors for infec-
tion remained unexplained in 14 to 49% of cases (61, 179). Per-
sons may be unaware of their exposure or may have difficulty
recalling specific risks that occurred. The recent discovery of a
sporozoite- or oocyst-specific protein, which elicited antibody
production and differentiated oocyst- versus tissue cyst-induced
experimental infection in pigs and mice, may help to solve this
problem (168). Serum antibodies to the sporozoite protein were

detected in humans within 6 to 8 months of an initial oocyst-
acquired infection. Therefore, this serological assay could be use-
ful for detecting exposure to oocysts in the early months after T.
gondii infection and could be useful for epidemiological studies.

Infection through Cysts

Consumption of meat. (i) Type of meat. Any meat from warm-
blooded animals and birds has been traditionally considered a
major source of Toxoplasma infection in Western countries. The
risk associated with the type of meat (lamb, pork, and beef, etc.)
varies among different countries according to local eating habits
and according to the prevalence in meat-producing animals. In a
multicenter study in Europe, meat consumption was estimated to
be responsible for 30 to 63% of cases of infection, while soil con-
tact represented 6 to 17% of cases (61). In the United States, a
recent case-control study showed an elevated risk for T. gondii
infection in persons eating raw ground beef (adjusted odds ratio
[aOR], 6.67; attributable risk [AR], 7%); eating rare lamb (aOR,
8.39; AR, 20%); eating locally produced cured, dried, or smoked
meat (aOR, 1.97; AR, 22%); or working with meat (aOR, 3.15; AR,
5%) (179). Outbreaks due to the consumption of undercooked
meat have been described. These outbreaks generally involved
only a few patients (2 to 20 persons) (reviewed in reference 5a).

A quantitative assessment of the risk of Toxoplasma in food for
consumers is hampered by the lack of data on the number of tissue
cysts resulting in infection of humans, the distribution and the
number of cysts in the different muscle sites in various hosts, as
well as their infectivity in commercial meat products. One recent
survey of meat from commercial markets (pork, chicken, and
beef) in the United States suggested a low risk, perhaps owing to
meat treatment processes, which could reduce the viability of cysts
(97). This may not be the case in countries where lamb and sheep
are the most consumed meats (31, 162).

(ii) Cyst resistance. Tissue cysts remain infectious in refriger-
ated carcasses (1°C to 6°C) or minced meat for up to 3 weeks.
Freezing alone is not a reliable means of rendering all tissue cysts
noninfective: cysts have remained viable for �11 days at �7°C.
However, the deep-freezing of meat at �12°C or lower for at least
3 days is usually efficacious to kill cysts, although it may depend on
the thickness of the piece of meat (91).

Tissue cysts are usually killed immediately by heating to
67°C. The survival of tissue cysts at lower temperatures de-
pends on the duration of cooking. Tissue cysts remain viable at
60°C for about 4 min and at 50°C for about 10 min (100).
Cooking for a prolonged period of time may be necessary un-
der household conditions to achieve the temperatures that are
required to kill all tissue cysts of Toxoplasma in all parts of the
meat. Some tissue cysts will remain infectious after cooking in
a microwave oven, possibly due to an uneven heating of the
meat. However, in a U.S. case-control study (179), microwave
cooking of meat was associated with a reduced risk of recent T.
gondii infection. This was explained by the fact that microwave
cooking is often associated with reheating already-cooked meat
or with defrosting or cooking frozen meat.

Commercial procedures of curing with salt, sucrose, or low-
temperature smoking may kill tissue cysts, but the survival time
of tissue cysts varies greatly with the concentration of the salt
solution and the temperature of storage. Salting does not nec-
essarily kill tissue cysts in homemade pork sausages. Under
laboratory conditions, solutions containing 2% sodium chlo-
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ride or 1.4% potassium or sodium lactate are effective within 8
h of injection for the killing of T. gondii tissue cysts in pork loin
(169).

Other food treatment processes, such as gamma irradiation at
a dose of 1.0 kGy and high pressure (300 mPa), were found to be
efficient for killing tissue cysts in meat, but some treatment pro-
cedures are barely applicable for meat destined for human con-
sumption (206).

Infection related to solid-organ transplantation. As T. gondii
tachyzoites can invade all nucleated cells, cysts can be found in
virtually any organ. Therefore, in solid-organ transplantation
(SOT), Toxoplasma infection can be transmitted through a
cyst-containing organ from a donor (D) with infection ac-
quired in the distant past to a nonimmunized recipient (R).
However, certain organs are more likely to harbor persistent
cysts than others. Muscles commonly sustain parasite encyst-
ment; thus, heart transplant patients are at a higher risk for
organ-related toxoplasmosis than are liver, lung, or kidney
transplant patients (Table 1). Toxoplasmosis was recognized
early as an infectious complication in heart transplant patients
(288), which motivated the implementation of large retrospec-

tive studies in several countries from 1980 onwards (Table 1).
However, the incidence of acquired toxoplasmosis in case of a
mismatch (D�/R�) is variable, since it depends largely on the
prevalence of toxoplasmosis in the country of study and on the
use of chemoprophylaxis after transplantation. In retrospec-
tive studies, the incidence can vary from 9 to 56% when the
patients benefit or not from a chemoprophylaxis scheme, re-
spectively, indicating that prevention is efficient (Table 1). In a
recent multicenter retrospective study including 22 patients
with acquired toxoplasmosis within a median time of 92 days
posttransplantation, mismatched transplants were docu-
mented for 9 patients, and the donor’s serology was unknown
for 8 other negative recipients (125). Twelve of 22 cases were
heart transplant patients. The incidence of donor-acquired
toxoplasmosis is less frequent in other SOT patients, and only 9
and 16 cases were reported for liver- and kidney-mismatched
patients, respectively, supported by solid serologic evidence
(Table 1). A case of disseminated toxoplasmosis following
small bowel transplantation was also described, but the se-
rostatus of the donor was unknown, making the source of in-
fection uncertain (48).

FIG 3 Sources of T. gondii infection in humans. The various sources of food-borne and environmental contamination of humans are represented.
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Infection through Oocysts

Survival of oocysts in the environment. As highlighted by previ-
ous epidemiological studies, environmental conditions are im-
portant for oocyst survival. Moist conditions can increase oocyst
survival during long periods of heat, which likely accounts for the
high prevalences in tropical countries of South America and Af-
rica. In Colombia, a correlation was found between the mean
amount of rainfall and the incidence of congenital toxoplasmosis
(152). Even in a country with a temperate climate, such as France,
the risk of infection in cats was shown to increase when the
weather was both warm and moist, or moderate and less moist,
reflecting the influence of climatic conditions on the prey popu-
lation and oocyst survival (3).

Despite the low prevalence (�1% in most studies) and short
duration of oocyst shedding by cats, the burden in the environ-
ment may be very high (3, 66). A single cat may shed more than
100 million oocysts, which are nonsporulated (Fig. 2). These
oocysts need between 1 and 5 days to mature and become in-
fective for other hosts, which explains why direct contact with
cats is not thought to be a major risk for human infection. In
the United States, an increased risk associated with exposure to
kittens was limited to respondents who had 3 or more kittens,
thus more likely to be infected through the shedding of oocysts

after primary infection (179). Oocysts are able to sporulate
within 2 to 3 days in different types of commercial cat litter and
occasionally remain viable for 14 days (94). Unsporulated
oocysts lose their capacity to sporulate, and, hence, to become
infective, after freezing at �6°C during 7 days or after exposure
to 37°C for 1 day. Once sporulated, oocysts are resistant to
harsh environmental conditions. They remain viable in a moist
environment for more than a year. Under laboratory condi-
tions, sporulated oocysts can survive storage at 4°C for up to 54
months. They survive freezing at �10°C for 106 days and heat-
ing at 35°C and 40°C for 32 days and 9 days, respectively. How-
ever, they are killed within 1 to 2 min by heating to 55°C to 60°C
(93), conditions easily obtained when cooking vegetables. The
wall of sporulated oocysts is highly impermeable and, there-
fore, very resistant to disinfectants (110).

Contamination of water. Oocysts can remain viable for long
periods of time in water and can resist freezing and moderately
high water temperatures. They are not killed by chemical and
physical treatments currently applied in water treatment plants,
including chlorination and ozone treatment (111). Outbreaks as-
sociated with the contamination of reservoirs supplying water,
such as those described for the Greater Victoria area of British
Columbia, Canada (16); in Santa Isabel do Ivai, Brazil (76); or in

TABLE 1 Reported cases of organ-related acquired toxoplasmosis in solid-organ transplant patients, 1980 to 2011j

Yr/country of study Type of study Transplant
No. of
patients

No. of
mismatches/no. of
cases with
chemoprophylaxis

No. of cases of
acquired
toxoplasmosis

No. of
Toxoplasma-
related deaths Reference(s)

1979–1988/United Kingdom Retrospective Heart 250 21/8 6 2 339
1980–1996/United States Retrospective Heart 575 32/16 4 4 229
1985–1993/United Kingdom Retrospective Heart 290 13/13 1a 0 244
1984–1997/Canada Retrospective Heart 205 20/20 0b 0 154

Liver 186 15 1c 0
Kidney 516 39 2d 0

1985–1991/Switzerland Retrospective Heart 121 18 14e 0 139
1986/United Kingdom Retrospective Heart 119 14 4 2 161
1988–2003/Spain Retrospective Heart 315 32/29 2 0 234
1989–2004/United States Retrospective Heart 596 UD/596 0 0 22
1987–2000/United States Retrospective Heart 377 45/45 4f 0 19
1989–2006/Italy Retrospective Heart 119 66/66 12g 0 294
1989–2008/Germany Retrospective Heart 344 30/30 UDh 0 88
2000–2009/Spain Retrospective Heart 1,979 9/UD (all organs) 12 3 (all organs) 125

Liver 7,709 6
Kidney 4,872 4

1983–2005/miscellaneous Case reports Heart NA 14/UD 14 8 13, 135, 153, 165, 172,
211, 226, 236, 286,
293

1987–1997/Switzerland Retrospective Liver 98 UD 3 0 140
1983–1988/United Kingdom Retrospective Liver 40 UD 1 (mismatch) 0 292
1995–2007/miscellaneous Case reports Liver NA 5 5 3 37, 39, 56, 219, 323
1983–2010 Case reports Kidney NA 16/2i 16 9 214, 217, 270, 282
a Four patients were lost to follow-up.
b Seven patients were lost to follow-up.
c Three patients were lost to follow-up.
d Twelve patients were lost to follow-up.
e Eleven asymptomatic cases.
f Three asymptomatic cases.
g Nine asymptomatic cases.
h There were 46 seroconversions in the whole population study.
i Six patients without chemoprophylaxis and 8 with unknown data.
j UD, unknown data; NA, not applicable.
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Coimbatore, India (21), involved a large number of patients. The
epidemics were preceded by peaks of heavy rainfall and turbidity
in the implicated reservoirs. Smaller epidemics were described
after the drinking of raw surface water in remote tropical areas (29,
75). Freshwater runoff from urban centers next to seashores may
contaminate seawater. Toxoplasma oocysts can remain viable for
extended periods of time in seawater (207). Shellfish are filter
feeders that concentrate T. gondii. Oocysts remained viable and
were detected in various species of shellfish under natural condi-
tions (119, 228, 263). The consumption of oysters, clams, and
mussels has been shown to be a risk factor for acquiring Toxo-
plasma infection in the United States (179).

The detection of Toxoplasma in water is difficult, and no stan-
dardized methods are available. The methodology is based on the
experience gained from other coccidians, such as Cryptospo-
ridium, and involves the concentration of oocysts using centrifu-
gation, filtration, immunomagnetic separation, or flocculation of
large volumes of water (109, 110, 300). Different PCR methods
have been proposed (308, 329). In France, a survey found Toxo-
plasma DNA in 7% of raw surface water samples. Well water was
PCR positive in 9% of samples in this French study (329) and also
in 13 to 27% of samples in Poland, depending on the depth of the
well (309). A positive correlation was observed between the con-
sumption of unboiled well water and the presence of Toxoplasma
antibodies, especially for farms with poor-hygiene conditions sur-
rounding shallow wells.

Contamination of soil, vegetables, and fruits. Contact with
soil was identified as a strong risk factor in a European multi-
center case-control study, and 6 to 17% of primary infections
in humans were attributed to this risk factor (61). A U.S. study
showed that the detection of antibodies against Toxoplasma
was 2-fold higher in a population with positive Toxocara anti-
bodies, suggesting a common exposure to contaminated soil
(182). The risk of acquiring Toxoplasma infection after soil
contact or ingestion is particularly high for children. Toxo-
plasma oocysts were isolated in as many as 32% of school play-
grounds in a Brazilian study (89).

Contaminated water and soil may act as vehicles for the trans-
fer of oocysts to vegetables and fruit for human consumption,
although there are few data available to confirm this. In several
risk factor or case-control studies, the eating of unwashed raw
vegetables or fruits was associated with an increased risk of pri-
mary infection (31, 185, 210). Experimentally, T. gondii oocysts
can adhere to berries, especially raspberries, and can be recovered
by bioassays in mice (192), but there has been no report of the
detection of Toxoplasma on fruits or vegetables under nonexperi-
mental conditions.

Infection through Tachyzoites

Food-borne contamination. Outside its host cell, the tachyzoite is
a fragile stage, easily destroyed by digestive enzymes (10-min sur-
vival in pepsin-HCl). It is also very sensitive to environmental
conditions and is usually killed rapidly outside the host. There-
fore, the horizontal transmission of Toxoplasma via tachyzoites is
probably not important from an epidemiological point of view.
However, tachyzoites were suggested to be the cause of rare cases
of acquired toxoplasmosis in humans after the consumption of
unpasteurized goat’s milk (316). The drinking of unpasteurized
goat’s milk was found to be a risk factor in an epidemiological

survey (179), suggesting that tachyzoites may enter the host by the
penetration of mucosal tissue.

Congenital infection. When primary infection is acquired by a
pregnant woman, tachyzoites can colonize placental tissues dur-
ing the dissemination process and from there can gain access to
the fetal compartment in about 30% of cases. The frequency of
vertical transmission increases with the gestational age at maternal
infection. At the beginning of pregnancy, the transplacental pas-
sage of tachyzoites is a rare event, but the consequences for the
offspring are heavy. The immune control of placental infection is
probably a key event in the occurrence of congenital infection
(254), but advances in the comprehension of the pathophysiolog-
ical process remain to be achieved.

Congenital infection is the most important part of the disease
burden due to Toxoplasma infection in humans. Clinical manifes-
tations of congenital toxoplasmosis first motivated research on
the parasite and its pathophysiology and epidemiology. However,
the factors influencing congenital transmission are still poorly
known, apart from the term of pregnancy at the time of maternal
infection and, of course, the immune status of the mother.

The observation of a decreasing seroprevalence of toxoplasmo-
sis in industrialized countries has complex consequences for the
risk of acquisition of Toxoplasma infection during pregnancy. At
first glance, a reduced seroprevalence increases the percentage of
pregnant women susceptible to primary infection and, hence, to
congenital transmission to their fetuses. However, the lower level
of circulation of the parasite in the environment diminishes the
global risk of acquiring infection during pregnancy. A national
surveillance system was implemented in France in 2007, which
aims to collect data from all cases of congenital toxoplasmosis
through data transmitted by laboratories certified for prenatal di-
agnosis or implicated in neonatal serological diagnoses. This net-
work reported 272 cases of congenital toxoplasmosis in 2007
(328). If these data can be considered exhaustive, they can allow an
evaluation of the overall prevalence of congenital toxoplasmosis
in France, 3.3 per 10,000 live births (328), which is nearly the
prevalence reported in Brazil (1 per 3,000 live births) (238) but
3-fold higher than that estimated in a pilot study in Massachusetts
(1 per 10,000 live births) (159).

Transmission through injection. Fourteen cases of laboratory
contamination of a parenteral origin have been described (166).
Most cases were attributed to needlestick injuries or scratching
while manipulating tachyzoites from the RH strain.

The risk of transmitting infection through a blood transfusion
is theoretically possible if the donor has recently acquired a Toxo-
plasma infection and is parasitemic at the time of blood sampling.
Similarly, a risk associated with bone marrow is possible if the
donor is parasitemic at the time of collection. However, the max-
imal duration of dissemination of tachyzoites through the blood
flow is barely known for humans; it may depend on the parasite
strain and on the host immune response. Parasite DNA was de-
tected in 9 out of 17 patients during 5 weeks following acute tox-
oplasmosis with lymphadenopathy (160). In a mouse model, it
was also shown by PCR that parasitemia was detected during 3
weeks after oral infection (249).

POPULATION STRUCTURE OF T. GONDII

Genotypes and Their Geographic Distribution
Studies of genotypes of T. gondii began in the early 1990s and at
first relied on isoenzyme analysis (69, 70) and on a few PCR-
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restriction fragment length polymorphism (RFLP) markers (175).
Genotyping was later refined by the addition of new PCR-RFLP
markers (313) and by microsatellite analysis (10, 11). The se-
quencing of selectively neutral introns was proposed to be a better
tool for phylogenetic studies (187), whereas microsatellites are
better adapted to population genetic structure and outbreak in-
vestigations (75, 223, 337).

Despite the presence of a sexual cycle and a worldwide distribu-
tion, the population structure of this parasite was initially de-
scribed as being highly clonal and exhibiting a low genetic diver-
sity. This was the conclusion of genetic studies of isolates from
Europe and the United States, which grouped these isolates into
three major multilocus genotypes, types I, II, and III, equivalent to
clonal lineages, stable in time and space (8, 69, 70, 175, 303). This
simple clonal structure is accompanied by a low level of genetic
divergence among the three lineages (only �1 to 2% divergence at
the DNA sequence level between lineages). However, multilocus
and multichromosome genotyping of isolates from other conti-
nents revealed a much more complex population structure with a
greater genetic diversity, likely reflecting a history of more fre-
quent genetic exchanges and genetic drift (7, 203) (Table 2). The
majority of isolates from South America, Africa, or Asia do not fit
into the three major lineages (with the exception of type III, which
is really cosmopolitan). The clustering of these genotypes led to
the description of new haplogroups, some of them largely distrib-
uted over continents, being considered other successful clonal lin-
eages (187, 223, 251). Ongoing efforts are aimed at gathering data
from analyses with different markers (PCR-RFLP, microsatellites,
and sequencing of introns) to establish a consensus nomenclature
for these haplogroups, which may be useful for basic biology as
well as for clinical studies. Up to now, 12 haplogroups (including
the 3 initially described lineages, types I, II, and III) have been
described (186, 187), based on sequence-based analyses, but these
haplogroups are not totally homogenous, and more resolutive
markers revealed subclustering that may be associated with geo-
graphical origins and phenotypic characteristics. There still re-
main truly atypical and highly diverse isolates with many unique
polymorphisms which cannot be clustered into one of these
haplogroups (222).

From Northern Europe (178) to Southern Europe (86), the
population structure of T. gondii is markedly clonal, with a pre-
dominance of strains belonging to the type II lineage. In France,
type II strains represent more than 90% of isolates from both
humans and animals (9, 18, 162). Two other clonal lineages are
occasionally (type III) or exceptionally (type I) found in Europe.
Type III may be more frequently encountered in Southern Europe
(86, 331). The isolation of atypical strains which do not fit into
these 3 major lineages is rare in Europe and likely suggests con-
tamination by non-European strains either during residence
abroad or after the consumption of imported food (12, 261). In
North America, the population structure appeared similar to that
observed in Europe, with a predominance of type II strains (175),
but recent data suggest a higher prevalence of atypical strains in
North America in wild as well as in domestic animals (103, 106)
and another clonal haplogroup (haplogroup 12) close to type II
(186). South America is an area with a high level of diversity for T.
gondii. Although additional clonal lineages, known as the Br I to
IV haplogroups, may be common and endemic in Brazil, it is clear
that frequent genetic exchanges have generated a wide variety of
different genotypes (7, 251). Eighty-eight genotypes (defined with
11 PCR-RFLP markers) have already been identified from a vari-
ety of animal hosts in Brazil, and new genotypes are continuously
being identified in different animal species, indicating an ex-
tremely high level of diversity of T. gondii in the population (252),
whereas type II seems to be very rare in South America (102). The
high level of genetic diversity observed in this continent is maxi-
mal in the wild Amazonian area, with many unique polymor-
phisms (7). In an Amazonian country such as French Guiana, the
interpenetration of anthropized and wild rainforest environments
leads to hybridization between strains that may represent a poten-
tial risk for human health (222). In Africa, a clonal population
structure consisting of additional common clonal lineages known
as the Africa 1 to 3 haplogroups, coexisting with type II and III
lineages, has been described (12, 223, 326). In Asia, the first re-
ports from China, Sri Lanka, and Vietnam (98, 104, 341) revealed
a more limited genetic diversity than in South America, with some
genotypes being common to both areas. In China, a clonal lineage

TABLE 2 Geographical distribution of Toxoplasma gondii genotypes and possible relationships with human disease

Geographical area Genotypes
Specific features of human disease in immunocompetent
individuals and those with congenital toxoplasmosis

Europe Type II (haplogroup 2), highly predominant; type
III, more present in South Europe; other
genotypes sporadically observed

Asymptomatic or benign disease in immunocompetent
individuals associated with type II or III; lower rate of
retinochoroiditis in immunocompetent patients and in
those with congenital toxoplasmosis than in areas of South
America

North America Type II (haplogroup 2), haplogroup 12, type III
(haplogroup 3), other genotypes

Asymptomatic or benign disease in immunocompetent
individuals associated with type II or III; not enough data
for other haplogroups

South and Central
America

High genotypic diversity; some haplogroups shared
with Africa (haplogroup 6); type II sporadically
present; type I rarely encountered; highly
atypical genotypes in the Amazonian forest

Higher rate and severity of retinochoroiditis in
immunocompetent patients and in those with congenital
toxoplasmosis; disseminated, potentially lethal, cases
observed with the most atypical genotypes

Africa African 1, 2, 3 (haplogroup 6); type III (haplogroup
3); type II

Data showed a higher rate of retinochoroiditis than in Europe

Asia Less genotypic diversity than in South America;
type III (haplogroup 3); a common haplogroup
widespread across the continent

No comparative data
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seems to be widespread across the country (341). The distribution
of the different genotypes is summarized in Table 2.

Hypothesis on the Origin of Genotype Distribution

The three major lineages in Europe and North America are
thought to have resulted from a few natural genetic crosses be-
tween highly similar parental types, the progeny of which ex-
panded to give rise to the clonal population structure during the
past �10,000 years (43, 312). The clonal expansion of these three
lineages may have been facilitated by an enhanced fitness, being
able to effectively outcompete other genotypes (302). The domes-
tication of cats, farming with the subsequent proliferation of do-
mestic rodents, and the breeding of a narrow range of domestic
animals, which began in the Middle East and the Mediterranean
area �10,000 years ago, may have favored this expansion. The
same phenomenon of outcrossing followed by the expansion of
clonal lineages may be applied to the additional clonal lineages on
other continents. The geographical expansion of identical geno-
types across continents or between continents may also have been
facilitated by human activities, such as transportation and human
exchanges (223), but also by the migration of birds (262). Recent
data showed that African and American strains share an ancestor,
supporting the hypothesis of T. gondii migration on ships together
with cats and rodents during the transatlantic slave trade during
the 18th and 19th centuries (223). The influence of human activ-
ities on the population structure of Toxoplasma could also be
found in the lower level of genetic diversity of the parasite found in
the anthropized environment than in the wild environment (7,
222).

South American isolates have diverged from North American
isolates. By calculating the extent of the geographical allelic diver-
sity, it was estimated that this split occurred approximately 106

years ago (187). This corresponds to the same time frame as the
reconnection of the Panamanian land bridge, allowing T. gondii
migration into South America with felids (187). However, the
worldwide evolutionary history of T. gondii, on different time
scales, will need more samplings from different continents, and
notably in Asia, the birthplace of the felids.

Genotypes and Virulence

Experimental virulence is usually defined with the mouse model
after the intraperitoneal inoculation of a given number of
tachyzoites. Type I isolates are highly virulent, leading to the death
of mice less than 10 days after the inoculation of �10 tachyzoites,
while type II or III strains are considered avirulent strains, allow-
ing survival after the inoculation of �103 tachyzoites. Isolates
from other clonal lineages or from atypical strains range from the
highly virulent to the intermediate or nonvirulent phenotype, ac-
cording to differences in the combination of genes that they have
inherited (68, 158, 289). Genotypes with a majority of type I alleles
are usually more virulent (223).

The mouse-virulent strains display several characteristics that
may explain the rapid dissemination of the parasite and the higher
tissue burden observed for mice and other susceptible hosts: en-
hanced migration across polarized epithelia or across the extracel-
lular matrix, higher rates of the ex vivo penetration of the lamina
propria and submucosa (25), and, in cell culture, higher growth
rates and lower rates of interconversion from tachyzoites to bra-
dyzoites (289). Experimental crosses between strains with differ-
ent virulence patterns facilitated the identification of several poly-

morphic genes coding for secreted factors of Toxoplasma
associated with differences in the expression of virulence in mice
(266, 290, 315). These key virulence factors are secretory proteins
discharged from apical organelles, the rhoptries. The proteins of
this rhoptry family (ROP5, ROP16, and ROP18) exert kinase or
pseudokinase activity. They are injected directly into the host cell
and play a role during the process of parasite invasion or in the
induction of interleukin-12 (IL-12) secretion by mouse macro-
phages (272).

Although these biological and genetic data demonstrate the dif-
ferent intrinsic properties of the different strains, the expression of
this virulence in a given host species is a more complex trait which
depends on several host and parasite characteristics. Different
host species are more or less susceptible. The genetic background
of a given species, as demonstrated for different mouse or rat
strains, may also influence the expression of virulence (51).

The expression of virulence in humans is a complex phenome-
non due to many other factors that could influence the pathoge-
nicity of a given strain: other parasitic factors (infectious stage and
inoculum), the genetic background of the host, and overall im-
mune status (218). Toxoplasma gondii is usually considered an
opportunistic parasite in humans, and any analysis of the relation-
ship between genotype and pathogenicity should consider these
different factors. This explains why the role of the strain is still a
matter of debate, especially when the host is immunocompro-
mised. Strains isolated from patients are mainly the strains circu-
lating in a given country, and the same type of strain can be re-
sponsible for different outcomes. For example, type II strains were
involved in 96% of consecutive cases of congenital toxoplasmosis
in France (9), in 85% of immunocompromised patients who ac-
quired Toxoplasma infection in Europe (12), and in 73% of cases
of ocular disease in France (121). In immunocompromised pa-
tients, the conclusion of a study of 85 patients (HIV and non-HIV
immunodeficient patients) was that the genotype of the infecting
strain had no influence on the clinical manifestation (cerebral or
extracerebral) or clinical outcome (12), indicating that immune
status is responsible for virulence expression in these patients.

However, several direct and indirect arguments plead for an
influence of the strain on clinical severity. In immunocompetent
patients, severe toxoplasmoses with multiorgan failure were
linked to atypical strains acquired from the Amazonian rainforest
(49). Occasional reports of such severe cases due to atypical strains
have come from other countries (82), sometimes after the con-
sumption of infected food (261). The high rate of occurrence of
acquired ocular toxoplasmosis in Southern Brazil (21% in indi-
viduals over 13 years of age) has been attributed to the genotypes
circulating in this region (73, 188). In cases of congenital toxoplas-
mosis, the strain was likely to play a role in the different outcomes
observed by a comparative prospective cohort study of congeni-
tally infected children in Brazil and Europe (146). In France,
where systematic diagnoses of congenital toxoplasmosis were per-
formed, type II isolates were found in all different aspects of con-
genital disease, from lethal infection to latent toxoplasmosis, clas-
sically depending on the term of pregnancy during which the
infection was acquired. On the other hand, the few atypical iso-
lates detected in this country were observed only for severe cases of
congenital toxoplasmosis (9, 74). The possibility of reinfection by
a different strain is another consequence of this genetic diversity,
raising the new concept that immunity against one strain may not
be completely protective against another one, as shown for a case
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of reinfection with an atypical strain leading to severe congenital
toxoplasmosis (115).

CLINICAL FEATURES OF TOXOPLASMOSIS IN HUMANS

Pathogeny and Development of the Immune Response
during the Course of Infection

Following the ingestion of cysts or oocysts, the respective excysted
forms, bradyzoites or sporozoites, rapidly invade the small intes-
tinal epithelium, where they convert into tachyzoites. The acute
early steps of intestinal infection of humans are not well charac-
terized, but the establishment of infection probably relies on the
intrinsic properties of the parasites. First, the high motility of
tachyzoites and cell interactions between the parasite protein
MIC2 and the host intercellular adhesion molecules (ICAM-1)
could be used for paracellular crossing. Moreover, the active in-
vasion of the apical side of the epithelial cell could be followed by
egress from the basolateral side (transcellular traversal) (198).
Whatever the early scenario comprising or not an initial multipli-
cation of tachyzoites in the intestinal epithelium, they further
cross the intestinal barrier and invade monocyte cells in contact
with the lamina propria, which are key cells for the dissemination
of Toxoplasma through the blood flow toward all organs, using
them as Trojan horses to cross biological barriers (24, 35), as
shown with a murine model of infection by intracellular fluores-
cent parasites (322). This peculiar capacity to actively invade all
nucleated cells, including professional phagocytic cells, contrib-
utes to the complexity of the host-parasite interactions through
the direct modulation of the host immune response.

The cellular and soluble effectors involved in the immune re-
sponse against T. gondii have been extensively studied in the last 2
decades. It was recognized early that a T helper 1 (Th-1) immune
response driven by gamma interferon (IFN-�)- and inter-
leukin-12 (IL-12)-producing cells is essential for the control of the
parasite burden. The fine regulation of immune effectors and their
signaling pathways were reviewed recently by Miller et al. (227).
Briefly, following the ingestion and transepithelial transfer of par-
asites, there is a local release of chemokines by infected cells, lead-
ing to the attraction of cells of the innate immunity. Neutrophils
are attracted to the infected foci early to phagocytose free parasites
and contribute to reducing parasite burdens (38). Other phago-
cytic cells, such as dendritic cells (DCs) and macrophages, play a
pivotal role in the initiation of innate immunity, as they are the
major sources of IL-12 as well as IL-18, thus promoting natural
killer (NK) and NKT cell activation (177), with both cell types
producing IFN-� in large quantities (132). Moreover, DCs and
macrophage cells can present parasite antigens associated with
major histocompatibility complex (MHC) class II antigens and
costimulatory molecules and further prime T cells (59). In addi-
tion, DCs and NK cells can also interact directly, with this dialog
resulting in the mutual activation and amplification of IL-12 and
IFN-� synthesis, respectively. Classically, the release of IFN-� can
trigger macrophage activation to synthesize tumor necrosis factor
alpha (TNF-�), thus being responsible for an amplification loop.
The further recognition of parasite antigens by pattern recogni-
tion receptors (PRRs) leads to an exacerbation of phagocytic ac-
tivity with an enhanced production of reactive oxygen species
(ROS) and nitric oxide (NO) species and tryptophan starvation
through 2-3-indole-amine dioxygenase (IDO) activation (255).

However, this potent machinery has two limitations. The first

limitation resides in the negative counterpart of a strong Th-1
immune response, which may overwhelm its goal and be respon-
sible for severe inflammation, resulting in intestinal tissue damage
or even the death of the susceptible host, as shown with a murine
C57BL/6 model (204). Thus, there is a need for downregulating
effectors, a role devoted at least partially to IL-10 and transform-
ing growth factor � (TGF-�), which modulate macrophage acti-
vation (233). Such a deleterious effect of an acute Th-1 immune
response is also well known in the setting of primary acquired
infection during pregnancy and can result in fetal loss, since IFN-�
destabilizes the Th-2 microenvironment necessary for maternal-
fetal tolerance. Thus, the complexity of the maternal-fetal inter-
face is magnified by Toxoplasma infection, and the role of the
placenta in the immunomodulation process is probably essential
for the maintenance of gestation after maternal infection (254,
276).

On the other hand, despite the powerful host cell effectors de-
scribed above, recent data provided mechanistic details on how
Toxoplasma surrounds the host immune system, thus making it-
self a successful parasite persisting lifelong in host tissues. It is now
recognized that the parasite rhoptry protein ROP16 can rapidly
process into the host cell nucleus, where it interferes with signaling
pathways of host immune responses, particularly through the
phosphorylation of the STAT3 and STAT6 transcription factors
(197, 291), leading to the downregulation of IL-12 production by
macrophages and, subsequently, of IFN-� (77). Interestingly, this
capacity is not shared by all strains but is devoted to type I and III
isolates (290, 291). This could partially explain the greater severity
usually observed for infections due to strains harboring type I
alleles. Moreover, type II strains, which do not exert this capacity
to repress the host response, induce a rapid immune response,
limiting parasite growth, thereby ensuring the survival of both the
host and parasite and resulting in bradyzoite conversion and the
encystment of the parasite for persistence. At the same time, it was
shown that Toxoplasma can also inhibit apoptotic mechanisms of
the infected cell by antagonizing caspase 8 (330) and interfering
with the NF-�B pathway (197), thus ensuring both protection
against the rapid clearance of intracellular tachyzoites by macro-
phages and the long-term survival of bradyzoites in the cysts.

In the immunocompetent host, the occasional rupture of indi-
vidual cysts is considered to be responsible for the continuous
stimulation of the immune response, which ensures a dynamic
control of the cysts.

Toxoplasmosis in Immunocompetent Subjects

Primary acquired infection is asymptomatic in more than 80% of
cases of immunocompetent subjects in European countries or
North America (230). In the remaining cases, patients may expe-
rience fever or cervical lymphadenopathy, sometimes associated
with myalgia, asthenia, or other nonspecific clinical signs. Lymph-
adenopathy and asthenia may persist for several weeks, mimicking
infectious mononucleosis, especially since monocytosis can be
observed on blood smears. A study conducted in the United States
showed that only 48% of mothers who gave birth to congenitally
infected infants could recall clinical signs suitable with toxoplas-
mosis during their pregnancy (42). More rarely but not exception-
ally, toxoplasmic chorioretinitis with visual impairment may re-
veal primary infection (72, 232), although it was previously
thought that ocular toxoplasmosis was the result of congenital
infection. Indeed, in a retrospective study by Delair et al., 100 out
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of 425 (23.5%) consecutive cases of ocular toxoplasmosis were
attributed to acquired toxoplasmosis (72).

In fact, it is now recognized that the severity of infection may
depend on the genotype of the strain. Indeed, as stated above, the
severity of infection is low in Western European countries and
North America, where type II strains predominate (175), but
much higher in other parts of the world, such as South America
(49, 75) or Africa, where other genotypes circulate (188, 223, 324).
In particular, several studies have shown higher incidences and
severities of chorioretinitis in Brazil (146) or Colombia, both dur-
ing primary infections of immunocompetent subjects and in con-
genitally infected infants. The strain genotype could also be an
explanation for the high proportion of retinochoroiditis (19 of
100 cases with proven acute infection) in an outbreak in Victoria,
British Columbia, Canada, where an atypical cougar isolate was
suspected to be the cause (40), and for the 100-fold-higher inci-
dence of ocular toxoplasmosis in patients born in Africa than in
patients born in Britain (148). Moreover, in the British Columbia
outbreak, 20% of patients had recurrent episodes of retinocho-
roiditis (47).

Such strains with atypical genotypes can also be responsible for
severe or lethal infections in immunocompetent subjects, which
may take the form of pneumonitis, myocarditis, meningoenceph-
alitis, or polymyositis. Data collected through the Resource Bio-
logical Center of the Centre National de Référence de la Toxoplas-
mose (Limoges, France) showed that among the few severe or
lethal infections that occurred from 2007 to 2010 in France, 7 of 10
were related to atypical genotypes acquired in French Guiana (49).

Toxoplasmosis in Immunocompromised Patients

Contrasting with the setting of Toxoplasma infection in immuno-
competent subjects, toxoplasmosis is always life threatening in
immunocompromised patients, whatever the strain, yet the host
immune background is of prime importance. Various factors re-
sponsible for profoundly impaired cellular immunity can lead to
severe toxoplasmosis, among which are HIV infection and immu-
nosuppressive therapies. Patients are more commonly at risk for
disease reactivation resulting from cyst rupture than for a newly
acquired infection, but the risk may differ among categories of
patients. In transplant patients, severe or disseminated toxoplas-
mosis can result from either a reactivation of latent infection in the
recipient or infection from a cyst-containing organ from a sero-
positive donor given to a seronegative recipient (39, 214, 282), a
situation where heart transplants carry the highest risk (139, 293).
A reactivation of a chronic infection may occur in the recipient
irrespective of the type of graft, but the risk is closely related to the
duration and degree of immunosuppression, with hematopoietic
stem cell transplant (HSCT) patients being most at risk (78, 81,
281). In HIV-infected patients, the incidence of toxoplasmosis is
closely related to CD4� T cell counts, with an increasing risk when
the count falls under 100 cells/�l. Toxoplasmic encephalitis (TE)
is the most predominant manifestation of the disease in these
patients and can lead to various symptoms, ranging from head-
ache, lethargy, incoordination, or ataxia to hemiparesis, loss of
memory, dementia, or focal to major motor seizures, usually as-
sociated with fever (212). The incidence of TE has decreased since
the use of highly active antiretroviral therapy (HAART) (183), as
was shown with a French cohort, where the risk was divided by 4
and fell from 3.9 to 1.0 cases per 100 person-years (2). Other
organs can be involved, either because they are target organs for

encystment and thus are subsequent potential sites for cyst reac-
tivation or because they are secondarily infected following the
dissemination of parasites from an initial reactivation site. After
the brain, the most frequently involved organs are the lungs, the
eyes (265), and the heart, resulting in myocarditis, but the isola-
tion of Toxoplasma from many other sites, such as liver, pancreas
(171), bone marrow, bladder (264), lymph nodes, kidney, spleen,
and skin (17), has been documented. Pulmonary or disseminated
toxoplasmosis is seen mostly in transplant patients, who develop
rapidly progressive infection and a massive dissemination of par-
asites (39, 78, 248).

Less frequently, toxoplasmic retinochoroiditis may occur inde-
pendently of any other signs of evolutive infection and must be
distinguished from other infectious etiologies, in particular eye
lesions due to cytomegalovirus (CMV), HIV, or syphilis.

Congenital Toxoplasmosis

Classically, congenital infection results from primary acquired
maternal infection during gestation. The frequency of vertical
transmission and the severity of fetal damage depend on the stage
of pregnancy when maternal infection occurs. The placenta plays
a main role in the process, as it is both a natural barrier which is
supposed to protect the fetus and a target tissue for parasite mul-
tiplication (1). In fact, the placental barrier is more efficient at the
beginning of gestation, leading to the passage of parasites in less
than 10% of cases during the first trimester, but becomes more
permeable throughout pregnancy, allowing parasite transmission
in around 30% of cases in the second trimester and 60 to 70% of
cases in the third trimester and even more close to the time of
delivery (113). The severity of fetal infection is inversely corre-
lated, since neonates are asymptomatic in more than 80% of cases
when infected during the third trimester of gestation (83). How-
ever, when transplacental transmission occurs during the first tri-
mester, the consequences for fetal development are heavy, often
leading to severe abnormalities or to abortion. Parasite multipli-
cation induces necrosis foci and strong inflammation, leading to
major abnormalities in the brain and eye tissues. It can induce the
destruction or profound remodeling of the white substance. In-
fected necrotized foci may block the aqueduct of Sylvius, resulting
in hydrocephalus of lateral ventricles. These foci further calcify
and can be detected by transfontanellar echography or cranial X
ray. Major sequelae include mental retardation, seizures, micro-
cephalus, hydrocephalus, deafness, and psychomotor deficiency
(269). Eye lesions are also more severe in early pregnancy, where
microphthalmia, cataract, increased intraocular pressure, strabis-
mus, optic neuritis, and retinal necrosis can be observed (71, 280),
as can uveitis and retinochoroiditis, possibly leading to blindness
if retinal lesions affect the macula. During the second trimester,
fetal infection can be of variable severity. Echographical ultra-
sounds may reveal areas of hyperechogenic mesentery, hepato-
splenomegaly, or cerebral calcifications. Clinical manifestations at
birth may include epilepsy, anemia, thrombocytopenia-induced
petechiae, rash, hepatic disorders, pneumonitis, or retinochoroid-
itis (269). In a prospective European study, intracranial lesions
detected at birth were associated with serious neurologic disorders
in about 30% of cases (64). Among the data from 272 cases col-
lected in 2007 through the French Surveillance Network (328), 11
cases resulted in the termination of pregnancy owing to cerebral
lesions or fetal death, and 87% of live-born infants were asymp-
tomatic. The remaining 13% of cases had intracranial calcifica-
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tions (14 cases), hydrocephalus (3 cases), and/or retinochoroiditis
of variable severity (12 cases).

Retinochoroiditis is a common feature that can be observed
whatever the time of maternal infection. Its particularity resides in
its frequently delayed clinical expression after birth. During a lon-
gitudinal U.S. study including 25 infants who were not treated in
utero or during their first year of life, Phan et al. (256) observed
that 72% of these infants developed new eye lesions during a mean
follow-up time of 5.7 years. Another prospective study of 102
infants who benefited from antenatal and postnatal treatment
showed that 78% were asymptomatic during a median follow-up
time of 7.8 years (32). A recent European cohort study showed
that the risk of developing eye lesions by 4 years of age was highest
for children with serious neurologic sequelae at birth but also
significantly increased for those with intracranial lesions or hepa-
tosplenomegaly (131). Conversely, children without retinocho-
roiditis detected by 4 months were at a low risk of developing eye
manifestations by 4 years of age. In any event, the question of
long-term pathogenicity may differ according to prevention pro-
tocols, and probably according to the strain genotype, as retinal
lesions are more extensive in congenitally infected Brazilian in-
fants (325). Indeed, a comparative prospective cohort study of
congenitally infected children in Brazil and Europe showed that,
independently of treatment, Brazilian children had a 5-times-
higher risk than European children for developing eye lesions, and
their lesions were larger, more multiple, more recurrent, and
more likely to impair vision (146).

Although the vast majority of congenital infections results from
primary acquired infection during pregnancy, parasite transmis-
sion can occur in rare instances in immunocompetent, previously
immunized women who are reinfected with Toxoplasma during
gestation (115, 144, 164, 193). A recent case benefited from geno-
typing, which revealed that reinfection was due to an atypical
strain which was responsible for severe congenital toxoplasmosis,
raising the temptation to take primary prevention measures even
in previously immunized pregnant women, particularly in cases of
travel to areas where atypical genotypes circulate (115). A reacti-
vation of past infection in HIV-infected women can also lead to
congenital transmission, as shown by several case reports (208).

Other exceptional cases of vertical transmission following ma-
ternal infection in the 2 months before conception have been de-
scribed (84, 216), but in most cases, the immune background of
the mother could explain the prolonged dissemination of the par-
asite and thus further placental colonization and transmission.
Another concept which has emerged from the French experience
of the systematic screening of pregnancies for �20 years is that
parasite transmission can be delayed, since few asymptomatic ne-
onates born to mothers with periconceptional infection were di-
agnosed with congenital infection after birth despite negative pre-
natal screening results (278). Indirect arguments also support this
hypothesis, since in a study by Romand et al. (284), the sensitivity
of prenatal diagnosis was lower in early pregnancy than in mid-
pregnancy, suggesting that vertical transmission may be delayed
for some women infected in early pregnancy (319). Thus, in rare
instances, parasites could persist in the placenta and proceed into
the fetal compartment only at the end of gestation, which could
explain why neonates may not have any clinical or radiological
signs in utero and at birth. However, such an occurrence is prob-
ably rare, and its global frequency is not easily appreciated.

STRATEGIES FOR DIAGNOSIS OF TOXOPLASMOSIS IN
HUMANS ACCORDING TO THE IMMUNE BACKGROUND OF
THE PATIENT AND THE CLINICAL SETTING

Depending on the patient’s immune background and on the dis-
ease setting or clinical signs, various techniques can be performed
to achieve diagnosis, either indirectly, by detecting antibodies of
different isotypes, or directly, by detecting parasites or DNA (Ta-
ble 3). Many techniques are available, which all have strengths and
shortcomings, and data obtained by use of these techniques
should be interpreted with critical knowledge. Parasite detection
or isolation is far less common in immunocompetent patients,
except for severe cases of acquired toxoplasmosis with multiorgan
failure, where the parasite may be found in the blood or other
pathological products several weeks and up to 2 months after con-
tamination (49, 84).

Diagnosis in Immunocompetent Subjects

Clinical indications of serologic tests. The diagnosis of Toxo-
plasma infection in immunocompetent subjects relies on serol-
ogy. Because infection is often asymptomatic, serologic diagnosis
is usually retrospective and is used to determine the immune sta-
tus in some situations, such as (i) in a pregnant woman, preferably
at an early stage of pregnancy; (ii) in a patient with uveitis or
retinochoroiditis with no known history of congenital infection;
or (iii) in a graft setting, i.e., in organ donors or transplant recip-
ients. Moreover, in patients with fever or lymphadenopathy, se-
rologic testing is a main diagnostic tool, since it allows the differ-
ential diagnosis of CMV, Epstein-Barr virus, or HIV infections but
also other diseases associated with lymphadenopathy, whether in-
fectious or not (hematological malignancies).

Kinetics of the antibody response. Immunoglobulin A and
IgM antibodies are produced during the first week following in-
fection and reach a plateau within 1 month (Fig. 4). Specific IgE
antibodies are also produced early and rapidly disappear (126).
Levels of specific IgM antibodies usually decrease after 1 to 6
months; they become negative in 25% of patients within less than
7 months (155) but commonly remain detectable for a year or
longer. Exceptionally, IgM can disappear within 3 months or be
hardly detected. On the other hand, specific IgA was initially
thought to have a shorter duration, but it was later shown that it
could be detected until 9 months; thus, it cannot be a surrogate
marker of recent infection (237). The precocity of specific IgG
detection depends on the technique used. Indeed, serologic tech-
niques using membrane antigens or whole parasites, e.g., a dye
test, an immunofluorescence assay, or an agglutination test, can
detect early the antibody response, which is first directed against
parasite surface antigens. ELISA techniques, which use mainly
mixtures of cytosolic or metabolic and surface antigens and which
differ among manufacturers, detect IgG later. Variations both in
the individual immune response and in the characteristics of the
technique used affect the kinetics of IgG detection, the synthesis of
which may be detected 1 to 3 weeks after the initial rise in IgM
levels. Whatever the technique, IgG synthesis reaches a plateau
within 2 or 3 months and then decreases more or less rapidly and
persists lifelong at residual titers, which are highly variable among
patients.

Serologic techniques and interpretation. (i) A wide range of
techniques. Serologic assays have improved and diversified over
the years (336). The Sabin-Feldman dye test, which is based on
parasite lysis by serum antibodies in the presence of complement,
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has been the gold standard for many years in terms of sensitivity
and specificity but is now performed by very few laboratories.
Many methods have been developed, from indirect fluorescence
antibody tests (IFATs) (267) to hemagglutination; enzyme-linked
immunosorbent assays (ELISAs); capture ELISAs allowing the de-
tection of specific isotypes IgM, IgA, or IgE; and immunosorbent
agglutination assays (ISAGAs), also suitable for IgM, IgA, or IgE
detection. Nowadays, most clinical laboratories use an ELISA for
the routine screening of specific IgG and IgM, whereas other tech-
niques are mostly reserved for reference laboratories. However,

the different methods on the market offer various performances
and provide IgG titer results that are not comparable between each
other, although they should be calibrated by comparison to an
international standard. Therefore, the levels of IgG must be appre-
ciated with the knowledge of the individual performance of the
assay, and additional information on antibody kinetics must often
be acquired from a second sample obtained 2 or 3 weeks later.
Although most methods satisfy technical quality criteria for rou-
tine diagnosis, some situations require more specialized tech-
niques for precise interpretations of the results.

(ii) The problem of low-level IgG detection. An everyday situ-
ation consists of correctly interpreting IgG ELISA results from the
“gray zone,” i.e., detecting low levels of IgG. In most cases, these
low titers indeed correspond to specific IgG, but it must be clearly
stated, particularly for organ donors or recipients, who could ben-
efit from chemoprophylaxis. These low titers must be confirmed
by using a dye test or a sensitive Western blot (WB) assay. A
commercial Western blot assay available in Europe but not
registered in the United States (WB Toxo GII; LDBio), which
reveals specific IgG responses to several T. gondii antigens, in-
cluding the tachyzoite major surface protein SAG-1, was shown
to have a specificity of 100% and a sensitivity of 99.2% com-
pared to the dye test (129).

(iii) The pitfall of IgM detection, or how to date the infection.
One other common pitfall in serologic interpretations concerns
IgM detection, the specificity of which must be confirmed by a
second technique. Even if most techniques have gained in speci-
ficity, they also gained in sensitivity, which is a big concern, since
most ELISA or ISAGA techniques can detect IgM for months or

TABLE 3 Diagnostic strategies for toxoplasmosis according to patient and disease setting

Patient Disease setting Diagnostic approach Technique(s) Sample(s)

Immunocompetent patient, transplant
recipient, or pregnant woman

Primary infection or
determination of
immune status

Serology Routine, IgG/IgM detectiona;
complementary,b IgG
avidity,c IgA detection, dye
test,d Western blotting,d

and ISAGAe

Serum

Fetus Maternal primary
infection

Prenatal diagnosisf based
on parasite detection

PCR, mouse assayb Amniotic fluid

Newborn Maternal primary
infection

Parasite detection PCR, mouse assayb Placenta, cord blood
Serology IgG/IgMe/IgA detectionb Cord blood serum and/or

newborn serum
Comparative Western blottingb Neonate and mother sera

in parallel

Immunocompromised patient Cerebral or
disseminated
toxoplasmosis

Parasite detectionb PCR Blood
PCR, cell culture, mouse assay,

and histology
CSF, BAL, tissue

specimens

Immunocompetent or
immunocompromised patient

Retinochoroiditis Serology Comparative Western
blotting,b Goldman-Witmer
coefficientb

Aqueous humor and
serum in parallel

Parasite detection PCR Aqueous humor
a Routine diagnosis relies mostly on ELISAs.
b Should be reserved for reference laboratories.
c For dating infection if IgM is detected, particularly in pregnant women or organ donors.
d When a confirmation of low IgG titers is needed.
e The immunosorbent agglutination assay is a reference technique to confirm IgM specificity and to detect IgM in congenitally infected neonates.
f Ministerial agreement is required in some countries.

FIG 4 Kinetics of the antibody (Ab) response. The average kinetics of the
different isotypes are represented, but they may differ among patients and
according to the serologic technique used. IgM can be detected for years after
infection.
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years after infection. By monitoring a cohort of 446 women who
acquired toxoplasmosis during pregnancy, Gras et al. (155)
showed that IgM detection using ISAGA and IFAT persisted be-
yond 2 years in 27% and 9% of women, respectively. Therefore,
IgM detection is no longer a marker of recent infection, unless it is
found at high titers. Thus, a current means of confirming or ruling
out a recent infection is the determination of IgG avidity (200), a
method which relies on the progressive increase of the affinity of
the antibody for its target antigen during the course of natural
immunity following infection. The measure of the strength of an-
tibody binding can be evaluated by an ELISA by introducing a
washing step using a dissociating buffer (usually urea), which can
remove the low-avidity antibody from a recently acquired infec-
tion. The resulting titer of detectable IgG is used to calculate a ratio
of titers obtained from treated and untreated samples; a high-
avidity index allows the exclusion of a recent infection with an
accuracy of time which is technique dependent. This test was ini-
tially developed through “in-house” methods (200) but has been
commercially available in Europe for about 10 years and has been
evaluated in numerous studies (138, 196, 304). In the United
States, the first FDA-approved test (Vidas Toxo IgG avidity assay;
bioMérieux) was approved in 2011. A high avidity ratio can ex-
clude an infection acquired in the preceding 4 months with most
commercial tests, ruling out an infection acquired during gesta-
tion when the test is performed during the first trimester of preg-
nancy. In routine practice, avidity testing allows the avoidance of
unnecessary spiramycin treatment in pregnant women and unjus-
tified long-term repeated follow-ups of fetuses and infants, pro-
vided that the test is performed before the fourth month of gesta-
tion. A U.S. study evaluated avidity testing in early pregnancy and
showed that infection during gestation could be ruled out for 74 of
125 women (56%) with IgM detection and that correct interpre-
tation by an expert from a reference laboratory reduced the rate of
unnecessary abortions by 50% (205). However, when the avidity
index is low or intermediate, the interpretation is ambivalent,
since it cannot exclude an infection acquired in the preceding 4
months but also cannot prove that it is recent, unless the index is
extremely low. From this standpoint, it should be kept in mind
that treatment delays IgG avidity maturation (202). In a study by
Petersen et al. (253), the mean IgG avidity index determined dur-
ing the 16 weeks following infection was lower in treated pregnant
women than in untreated nonpregnant patients (0.092 versus
0.149; P � 0.01). In that same study, only 2 out of 103 sera from
treated women reached a high avidity index after 4 months, un-
derlining again the potential impact of treatment and in accor-
dance with other studies using other assay devices (138, 225). An-
other way to appreciate the age of infection resides in the kinetics
of IgG titers analyzed in two serum samples obtained at 3-week
intervals in the absence of any specific therapy. Rising IgG titers
are suggestive of an infection acquired less than 2 months before
the earlier sample, but one must be aware that treatment may also
reduce or abolish the increase of IgG titers (202). Combinations of
different diagnostic tools and clear-cut interpretations are neces-
sary to achieve an accurate dating of infection and safe counseling
for pregnancy management (Fig. 5). Proper serologic interpreta-
tion is critical to avoid the unnecessary worry of women with
persisting IgM from a past infection, and laboratories that are not
skilled in this field should refer samples to reference laboratories,
as the consequences of misdiagnosis can be heavy.

A continuous effort has been made in the field of research and

development of in vitro diagnoses, and opportunities for other
methods for dating infections could emerge in the future. Giraldo
et al. developed a capture ELISA to detect anti-glycosyl-inositol-
phospholipid IgM that was mostly associated with recent infection
but showed cross-reactivity with anti-Plasmodium IgM in 2 of 30
patients with malaria (150). Moreover, many recombinant pro-
teins from T. gondii have been synthesized and tested for sensitiv-
ity and specificity in IgG ELISAs (194). Some of them displayed an
interesting avidity response pattern, allowing a better perfor-
mance than crude antigens for discriminating between chronic
and acute infections, but their interest to clinical practice remains
to be confirmed with larger series (28, 257).

Serologic Screening and Consequences for Clinical
Management of Pregnancy

Some European countries have a policy for the prevention of con-
genital toxoplasmosis and undertake a systematic serologic
screening of pregnant women, which is partially or punctually
followed by other countries. In France, a first serology is per-
formed before the end of the first trimester of pregnancy, and in
the case of IgM detection, efforts are made to obtain reliable con-
clusions about the serologic status, with the testing of samples
being repeated until a final interpretation is made. In the case of a
negative result, serologic testing is repeated every month until
delivery. A final examination is highly recommended 2 to 3 weeks
after delivery to verify the absence of peripartum infection, which
would have gone unrecognized, since antibody production would
not yet have begun (201).

When recent infection is highly suspected at the beginning of
pregnancy or when serologic conversion is observed, the patient
must be referred to a reference center for confirmation, an accu-
rate dating of infection, the validation of the indication of amnio-
centesis, and clinical counseling.

Diagnosis of Congenital Toxoplasmosis

Prenatal diagnosis and follow-up of pregnancy. When maternal
infection acquired during pregnancy is clearly established or
highly suspected, the current practice is to treat the mother with
spiramycin until delivery and to propose a prenatal diagnosis (Fig.
6). Moreover, ultrasound surveillance is scheduled every month to
monitor fetal development carefully. An amniotic fluid puncture
is performed after 16 weeks of gestation and at least 4 weeks after
maternal infection. Prenatal diagnosis relies mostly on the PCR-
based detection of parasite DNA, but in most reference centers,
amniotic fluid is also inoculated into mice. This in vivo assay relies
on the detection of an antibody response in the animals by the
examination of serum samples drawn 4 to 6 weeks after inocula-
tion. This was the first means of parasite detection in the late 1980s
(85), but because of the long response time and the lower sensi-
tivity than that of PCR, it is now reserved mostly for strain isola-
tion for epidemiological purposes. However, it can be punctually
useful in cases of a nonconclusive PCR result, for the rare occur-
rence when inhibitors of Taq polymerase are detected.

Several PCR gene targets have been used over the years, with
various performances in relation to the use of repeated or single
target genes and the means of revealing amplification products
(46, 53, 65, 295). The heterogeneity of PCR assays was clearly
shown in a European study (250). The history of PCR use to detect
T. gondii was extensively reviewed by Bastien (26). Most longitu-
dinal studies reporting the sensitivity of prenatal diagnosis by PCR
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for routine diagnosis were conducted in the late 1990s or early
2000s, with most of them targeting the 35-fold-repeated B1 gene.
The sensitivity rates varied mainly from 65% to 80% using con-
ventional PCR techniques (127, 277, 284), but multicenter studies
pointed toward great differences between centers (317). To date,
real-time PCR technology has replaced conventional PCR in rou-
tine practice and has probably contributed to a gain in sensitivity,
but retrospective data comparing the use of the same target gene in
a conventional PCR assay and in a quantitative PCR assay in large
series are lacking. In addition, such analyses are complicated by
the fact that extraction techniques and amplification reagents
have simultaneously evolved over time and contribute largely to
the efficacy of the PCR assay (340). Furthermore, in 2000, Homan
et al. (173) described a new sequence target, REP-529, which is
repeated 200- to 300-fold in the Toxoplasma genome and prom-
ised better performance. In France, where prenatal diagnosis has
been routine for 2 decades, a particular effort has been made to
inventory and evaluate the performances of PCR techniques used
by reference centers (27, 310). These multicenter studies have ob-

jectified the ongoing widespread use of the REP-529 real-time
PCR and pointed toward its higher sensitivity than that of B1 (310;
F. Robert-Gangneux et al., presented at the 17th European Con-
gress on Clinical Microbiology and Infectious Diseases, Barce-
lona, Spain, 19 to 22 April 2008). A recent prospective multicenter
clinical study evaluated the performance of the REP-529 real-time
PCR and showed that parasites could be detected in amniotic fluid
from 47/51 (92%) infected fetuses, thus confirming the high
sensitivity of prenatal diagnosis using this target (332). These data
are in agreement with national data collected annually in France
since 2007 by the Centre National de Référence de la Toxoplas-
mose through the national surveillance network of experts from
reference laboratories accredited for prenatal diagnosis (http:
//www.chu-reims.fr/professionnels/cnr-toxoplasmose-1/), which
yielded a sensitivity of prenatal diagnosis of about 90%. It is now
acknowledged that the false-negative results are probably the re-
sult of very low parasite densities in amniotic fluid (283, 310) or
probable delayed parasite transfer through the placenta, rather
than technical limitations. Indeed, the sensitivity of prenatal diag-

FIG 5 Interpretation of T. gondii serology in pregnant women.
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nosis is lower for maternal infections acquired during the first
trimester than for infections acquired later, suggesting that verti-
cal transmission could occur after amniotic fluid sampling (284,
332). In addition, early maternal treatment could contribute to
reducing the parasite burden detected in the fetal compartment,
which could explain the low numbers of parasites quantified in
amniotic fluids. Quantitative PCR can be used as a prognostic
marker, since higher T. gondii concentrations in amniotic fluid
were shown to be correlated with clinical signs in fetuses or neo-
nates (283). However, results from multicentric studies showed a
lack of reproducibility of parasite quantification, particularly with
low parasite burdens, and called for a standardization of the tech-
niques (310).

What emerges from several studies is that PCR has a negative
predictive value of nearly 100% for maternal infections in the first
or second trimester of pregnancy (284, 332). On the other hand, a
positive PCR, if performed in an accredited reference laboratory
using general guidelines to avoid contamination, has a positive
predictive value (PPV) of 100%.

In countries where screening policies include prenatal diagno-
sis, a switch of treatment from spiramycin to a pyrimethamine-
sulfonamide (sulfadoxine or sulfadiazine) is performed in the case
of a positive antenatal result (Fig. 6). There may be variations in
this protocol; e.g., when infection occurs during the third trimes-
ter of pregnancy, therapy with pyrimethamine-sulfonamide may
be prescribed immediately, and prenatal diagnosis may not be
performed, according to the stage of gestation and depending on
local practice. Medical abortion is usually reserved for cases with

severe fetal abnormalities detected during ultrasound surveil-
lance. The efficacy of prenatal treatment has been largely debated
by contrary studies and is described in more detail in the last
section of this review.

Postnatal diagnosis of congenital toxoplasmosis. The postna-
tal screening of neonates is an approach complementary to prena-
tal diagnosis or can be an alternative measure in countries where
the serologic screening of pregnant women is not implemented.

Even with prenatal serologic screening, an analysis of amniotic
fluid may not be performed for a large proportion of infected
fetuses (22 to 52%), corresponding mostly to serologic conversion
that occurred at a late stage of pregnancy (34, 275, 277, 332).
Therefore, neonatal screening is critical to diagnose infection in
this setting as well as to compensate for the few false-negative
results of antenatal diagnoses.

(i) Follow-up protocol for newborns. At birth, the neonate un-
dergoes a complete clinical and neurological checkup. A transfon-
tanellar ultrasound examination is also performed to detect cere-
bral calcifications and may be supplemented by a computed
tomography (CT) scan in the case of abnormalities, although its
superiority has not been clearly demonstrated. An examination of
the ocular fundus takes place during the first week of life and is
repeated every 3 or 4 months according to local practice. Fol-
low-up of neonates is essential when prenatal diagnosis was not
performed or was negative, and efforts are made to detect biologic
signs of fetal infection. There are two complementary strategies to
diagnose congenital infection at delivery, i.e., (i) parasite detection
in placenta or cord blood serum and (ii) serologic analysis of ne-
onate serum with the aim of demonstrating the presence of spe-
cific antibodies which would be evidence of an in utero infection
(Table 4). For this purpose, cord blood serum is recovered, and
serologic testing of the neonate is repeated at 1 month of life and
then every 2 or 3 months to monitor the decrease in levels of
maternally transmitted antibodies, which usually disappear
within 5 to 8 months. The different diagnostic tools and expected
results in cases of infection are summarized in Table 4.

(ii) Serologic testing. Serologic diagnosis commonly relies on
the detection of specific antibody isotypes that are produced by
the neonate. The detection of specific IgM or IgA antibodies,
which cannot cross the placental barrier, is a key marker of fetal
infection but requires further confirmation when detected in cord
blood serum, as it can reflect contamination with maternal serum
at delivery. All serologic assays are not validated for IgM detection
in cord blood or newborn serum, and few are available for IgA
detection. The most sensitive one in this setting is an immunocap-
ture test, the ISAGA. Nonetheless, the sensitivities for IgM and IgA
detection do not exceed 70% and 65%, respectively, ranging from
41 to 70% for IgM in most studies (34, 149, 235, 277, 332). The
poor detection of specific IgM and IgA in neonates appears to be
influenced by maternal treatment, as shown by a multicenter Eu-
ropean study (235), and more specifically, in a French series where
all women who seroconverted were treated as usual practice, it was
reported that IgM sensitivity was significantly lower when moth-
ers were treated with pyrimethamine and sulfonamide than when
they were treated with spiramycin (275). The combination of IgA
detection and IgM detection was shown to increase the rate of
diagnosis of infected neonates (33, 277, 332), but overall, what
determines the detection of these isotypes at birth is the time of
maternal infection, since IgM and IgA are more likely to be de-
tected in newborns whose mothers seroconverted during the third

FIG 6 Management of pregnancy with confirmed or highly suspected perg-
estational toxoplasmosis. WG, weeks of gestation.

Epidemiology and Diagnosis of Toxoplasmosis

April 2012 Volume 25 Number 2 cmr.asm.org 281

http://cmr.asm.org


trimester of pregnancy (33), an observation which is consistent
with a transient synthesis of fetal IgM or IgA and its disappearance
before delivery when maternal infection occurred at an early stage.

As maternal IgG is passively transferred in utero, the simple
quantitative assay is of no help in the diagnosis of fetal infection, as
the IgG titer reflects mostly the amount of transferred antibody
and can easily hide a low level of synthesis of IgG by the neonate
himself. Therefore, a qualitative analysis is needed to differentiate
between maternal antibodies and antibodies synthesized by the
infected neonate, which are likely to recognize different T. gondii
antigens. A comparative analysis of mother- and neonate-specific
IgG may help provide serologic evidence of fetal infection, partic-
ularly when no IgA or IgM is detected. Western blotting (WB)
(268) and an enzyme-linked immunofiltration assay (ELIFA)
(258) both allow a qualitative analysis of specific IgG or IgM by a
comparison of band patterns or precipitin patterns, respectively,
from paired mother-newborn sera with an equal sensitivity (259).
Several studies analyzed the diagnostic performance of WB and
reported sensitivities of 48 to 50% and 78 to 82% for IgG detection
at birth and within the first 3 months of life, respectively (274,
320). The combination of WB detection of IgM and IgG allowed a
gain in sensitivity, reaching 65 to 79% and 83 to 94% at birth and
at 3 months of life, respectively (271, 274, 320). The combination
of ISAGA and WB yielded even better results in those studies.
However, much attention must be paid to the reading and inter-
pretation of the band patterns. Indeed, interpretations of similar
mother-infant patterns showing some bands of greater intensity
for the infant serum must be done with caution, since they can be
observed for noninfected newborns. Such variations in estima-
tions between readers could account for specificities below 100%
in some series (271, 320). Aside from this restriction, WB was the

earlier test allowing the diagnosis of congenital infection in 3/23
and 1/17 asymptomatic newborns in studies by Tissot-Dupont et
al. (320) and Robert-Gangneux et al. (274), respectively. In these
cases, where the detection of IgM, IgA, and parasites was negative
at birth, it would have taken several months to observe the absence
of a decrease of the IgG titer after repeated testing if WB had not
been available. Therefore, this test has provided significant ad-
vances in the early diagnosis of congenital toxoplasmosis, partic-
ularly in the first 2 or 3 months after birth. Notably, it offers the
advantage of easily confirming the contamination of cord serum
with maternal serum by yielding identical IgM patterns, thus
avoiding the urgent checking of the neonate and needless worry
for the mother. However, considering the high cost of this test,
now commercially available and thus warranting a reproducibility
of manufacture, it should be reserved for cases where the detection
of cord IgM needs to be confirmed or where an IgM ISAGA is
negative.

(iii) Parasite detection. The parasitological examination of pla-
cental tissue is one of the usual biologic tools used to diagnose a
congenital Toxoplasma infection at birth, along with the serologic
screening of the newborn. As for prenatal diagnosis, the demon-
stration of parasites in the placenta relies on mouse inoculation or
DNA detection by PCR. Most retrospective studies reported that
the examination of the placenta has a 42 to 71% sensitivity and a
92 to 100% specificity (34, 134, 137, 235, 275, 277), depending on
the techniques used. The combination of both methods yields a
better sensitivity, reaching 74% in one study (137). Similarly to
IgM serologic screening, a decreased sensitivity for parasite detec-
tion by mouse inoculation was reported in some studies when
mothers were treated with a regimen combining pyrimethamine
and a sulfonamide (16, 20, 22). Despite heterogeneous results for

TABLE 4 Biological techniques used and their interpretation for diagnosis of neonatal congenital toxoplasmosis

Technique used Sample Frequency of sampling

Interpretation

Positive if: Negative if:

Mouse inoculationa Placentab At birth At least one positive mouse with
brain cysts detection

Negative serology in all mice
Cord blood

PCR Placentab At birth Positive PCR Negative PCR
Cord blood

Serology (IgG, IgM, IgA)a,c Cord blood serum At birth IgM detectiond No IgM detection
IgA detectiond No IgA detection

Western blot with paired
mother-cord blood
samplesa

Cord blood serum and mother
serum (at delivery)

At birth Specific IgG or IgM pattern in
the newborn

Identical IgG patterns (transmitted
antibodies), no IgM in the
newborn

Serology (IgG, IgM, IgA)c Infant serum At 1 mo of life and then
every 2 or 3 mo

IgM detection No IgM detection
IgA detection No IgA detection
Absence or decrease of IgG titers

over 6 mo or persistence over
12 mo of age

Clearance of maternal IgG under
age of 1 yr

Western blot on paired
mother-child samplesa

Infant serum and mother
serum (at delivery)

At 1 mo and 2-3 mo of
life

Specific IgG or IgM pattern in
the newborn

Identical IgG patterns (transmitted
antibodies), no IgM in the
newborn

a Should be done by reference laboratories.
b In rare instances, the detection of parasites in placenta may occur in the absence of congenital infection.
c IgM and IgA detection by immunocapture or, better, by an immunosorbent agglutination assay (ISAGA).
d Attention must be paid to the possible contamination of cord blood by maternal serum at delivery. A positive result needs to be checked at 1 week of life.
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sensitivity, the positive predictive value (PPV) was high, ranging
from 91 to 100% for the mouse assay (134, 275); thus, a positive
placenta result is a parameter of critical importance for the man-
agement of neonates with suspected congenital infection. A posi-
tive result obtained only by PCR is more debatable, since in some
studies, parasite DNAs could be detected in a few cases where
congenital infection was ruled out (33, 134, 275). Therefore, the
PCR result cannot be fully reliable by itself and should be con-
firmed by another criterion in favor of infection. The sensitivity of
the mouse assay is particularly high when maternal infection oc-
curred during the third trimester of gestation, which could be
related to a shorter exposure to maternal treatment. In these
mothers at a late stage of gestation but with a high likelihood of
vertical parasite transmission, an examination of the placenta
compensates for the frequent lack of a prenatal diagnosis. In our
hands, in 3 of 27 infected neonates born alive, the detection of
parasites in the placenta was the only evidence of congenital toxo-
plasmosis at birth and during the first 3 months of life, since the
prenatal diagnosis was negative or was not performed and IgM
was not detected in the neonates (275). A similar observation was
reported by Fricker-Hidalgo et al., who diagnosed 3 of 33 infected
neonates by means of placental examination only (137). Such data
emphasize the clinical relevance of a positive placental sample,
which can contribute to an early diagnosis in situations where
prenatal screening is not performed or is negative.

(iv) New hopes for the future. An IFN-� release assay was de-
scribed recently, which could open a new complementary ap-
proach for the postnatal diagnosis of congenitally infected infants
(54). This test is based on the measurement of IFN-� concentra-
tions by an ELISA after the in vitro stimulation of whole blood cells
with crude Toxoplasma antigens. The authors of that study evalu-
ated this method with 62 infants under 1 year of age, 17 of whom
were congenitally infected, and reported a sensitivity of 94% and a
specificity of 98% (54). This test was the only criterion for con-
genital infection in 2 infants between 3 weeks and 3 months of age.
This type of assay has already proven useful for the diagnosis of
Mycobacterium tuberculosis infection (184) and could be part of
future screenings for congenital toxoplasmosis if its reliability is
confirmed. However, its implementation in routine use will re-
quire standardization, since there is no commercial test available
for this indication.

Diagnosis of Toxoplasmosis in Immunocompromised
Patients

Parasite detection. Since acute toxoplasmosis in immunocom-
promised patients can be rapidly lethal, its diagnosis is an emer-
gency. Whether serology is essential to estimate whether the pa-
tient is at risk for a reactivation of infection, evidence of evolutive
infection is provided by the demonstration of tachyzoites in fluids
or tissues by PCR or microscopic examination (Table 3). Al-
though a direct examination of Giemsa-stained tissue sections or
smears is the fastest and cheapest means of diagnosis, it frequently
lacks sensitivity. An attempt to isolate the parasite strain can be
undertaken by mouse inoculation or cell culture. Various samples
can be collected according to clinical signs and the type of immu-
nosuppression. In transplant patients, where disseminated toxo-
plasmosis is frequent, parasites can be detected in bronchoalveolar
lavage (BAL) fluid, blood, bone marrow aspirate, cerebrospinal
fluid (CSF), or virtually any biopsy specimen from a deep site. For
these patients, the control of Toxoplasma disease may require a

reduction of immunosuppressive therapy, which can be moni-
tored by the measurement of the decrease of parasite loads using
quantitative PCR (248).

During cerebral toxoplasmosis, parasite DNA can be detected
in CSF and blood with sensitivities of 33 to 65% (57, 241, 247, 297)
and 16 to 23% (130, 199, 273), respectively. However, these data
are drawn from studies evaluating Toxoplasma DNA detection,
which have been conducted with HIV patients from Europe or
Northern America before the use of HAART and before the avail-
ability of quantitative PCR methods. Therefore, these results must
be interpreted with some caution for several reasons. First, it is
likely that nowadays, molecular diagnosis has gained in sensitivity,
similarly to prenatal diagnosis, which benefited from new-gener-
ation PCR methods. However, at the same time, the use of
HAART has diminished considerably the incidence of toxoplas-
mic encephalitis in these countries, thus limiting the collection of
new data. Second, current knowledge of strain genotypes and their
virulence should lead us to reconsider the sensitivity of PCR for
blood according to strain virulence, which conditions its capacity
for multiplication and dissemination. Recent studies conducted
with HIV-infected patients in Brazil and Cuba pointed toward
PCR sensitivities of 69 to 83% (14, 240) and 80% (58) in CSF and
blood, respectively. These high sensitivities could indeed be in
agreement with the higher virulence of parasite genotypes circu-
lating in South America, but technical pitfalls could also explain
such high rates. Indeed, a more recent study did not confirm these
data, since those authors found only 29/82 (35%) and 1/85 posi-
tive CSF and blood samples, respectively (63).

Place of serologic testing. Serologic testing is useful (i) as an
exclusion criterion, except for HSCT patients, when it is negative
for a patient with symptoms consistent with acute toxoplasmosis
or (ii) as a monitoring indicator, mainly for solid-organ transplant
patients, prompting further investigations in cases of strong in-
creases in IgG titers. In rare instances, it can also provide evidence
for recent infection acquired orally (136) or, more rarely, from a
transplanted organ. For transplant patients, serologic test results
need to be interpreted with the knowledge of their antibody status
prior to transplantation. Indeed, IgM may reappear during the
course of a reactivation of infection (136), and on the contrary, the
antibody response may be abolished, particularly in HSCT pa-
tients (79). Regular serologic testing is common following heart
transplantation, but attention must be paid to the interpretation
of rising IgG titers, since serologic reactivation is frequently ob-
served, independently of any clinical reactivation (211). For HIV-
infected patients, Derouin et al. reported that high IgG titers could
be predictive of the occurrence of toxoplasmic encephalitis when
CD4� cell counts fall under 200 cells/�l (80), which is in accor-
dance with a subclinical reactivation of dormant cysts before clin-
ical manifestations. However, the delay between the rise in anti-
body titers and the occurrence of TE is not well defined, since it
depends closely on the evolution of the immune balance of each
patient.

Diagnosis of Retinochoroiditis

The diagnosis of retinochoroiditis relies primarily on an ophthal-
mological examination. The presence of typical lesions (white fo-
cal lesions often associated with a vitreous inflammatory reac-
tion), together with Toxoplasma seropositivity, calls for specific
anti-Toxoplasma treatment, further confirmed by a good clinical
response. However, biological examinations are necessary for
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some patients with atypical ocular lesions or those in whom the
response to anti-Toxoplasma therapy is inadequate. Laboratory
methods include parasite detection and analysis of local antibody
production in ocular fluids, with both approaches being comple-
mentary. PCR detection of parasite DNA in aqueous humor (AH)
or vitreous fluid has been reported with variable successes even
using quantitative PCR techniques, as its sensitivity was evaluated
to be 16 to 55% (122, 143, 231, 314, 327). It has been suggested
that Toxoplasma DNA is more likely to be detected in aqueous
humor from immunocompromised patients, but prospective data
are scarce and the published series are small, thus not allowing the
drawing of clear conclusions. Westeneng et al. (338) reported pos-
itive PCRs for 4 of 10 patients with uveitis with various causes of
immunodeficiency, whereas Talabani et al. (314) found parasite
DNA in 8/11 patients (73%), for whom a positive PCR result was
the only positive test in 4 cases. In a series of atypical retinocho-
roiditis by Fardeau et al., 8/9 patients with a positive PCR result
were immunocompromised, but at the same time, PCR failed to
detect 9 patients who responded to anti-Toxoplasma treatment
(120).

The detection of a specific antibody response in ocular fluids is
a useful complementary tool for the diagnosis of ocular toxoplas-
mosis. Ocular fluid antibody production can be quantitatively or
qualitatively determined by comparison to serum IgG titers. Ab-
normal amounts of anti-Toxoplasma antibodies in aqueous hu-
mor can be evidenced by the calculation of the Goldmann-Wit-
mer coefficient (GWC), with a sensitivity of up to 81% (122) but
more frequently around 50% (143, 279, 314). The GWC is defined
as follows: [anti-Toxoplasma IgG (IU/ml) in AH/anti-Toxoplasma
IgG (IU/ml) in serum] � [serum total IgG (g/liter)/AH total IgG
(g/liter)]. An alternative method using mumps virus antibody ti-
ters as a comparator to evaluate the anti-Toxoplasma antibody
load in AH was proposed by Turunen et al. (321). It has been
underlined that repeated sampling at intervals of several weeks
allowed a gain in the sensitivity of the GWC, which rose from 57%
to 70% in one study (143). However, the optimal time for eye
sampling is debatable, since other authors attributed a low PCR
performance to late sampling (327). The length of the interval
between the onset of clinical symptoms and paracentesis also
seems to be critical for the detection of specific band patterns by
Western blot analysis of serum and paired AH samples, with better
results being obtained for intervals from onset to sampling of
more than 30 days (314). The sensitivity of WB is similar to that of
the GWC, as it ranges from 53 to 81% (122, 279, 314, 327), but its
specificity was higher (�95%) in most studies, since it is less in-
fluenced by inflammation and the rupture of the blood-retina
barrier. The detection of specific IgA in AH has also proven to be
useful, either as a quantitative marker of local antibody synthesis
by computing a ratio between serum and AH titers (195) or as a
qualitative marker by comparative WB patterns (142), with sensi-
tivities of 63% and 76%, respectively.

Data obtained from several large series of patients clearly dem-
onstrate that combining techniques improves the sensitivity of
biological diagnosis, which can reach 83 to 85% when the GWC,
PCR, and WB are combined (314, 327). Some authors proposed
an algorithm to decide which techniques to apply when a small
volume of AH is available, according to the patient’s own charac-
teristics and the time of AH puncture (314): (i) priority for the use
of real-time PCR during the 10 days following the onset of symp-
toms, especially if the patient is immunocompromised or if the

total size of the foci is large (�2 optic disc diameters); (ii) the use
of the GWC beyond 10 days if old scars are present and/or if the
reaction in the anterior chamber is mild to severe, associated with
PCR if the total size of foci is large (�2 optic disc diameters); and
(iii) WB, which would be optimal when sampling occurs more
than 30 days after the onset of symptoms. The observations re-
ported by Labalette et al. for 27 patients older than 50 years of age
suggest that the combination of AH antibody load determinations
and PCR improves the sensitivity of diagnosis independently of
the time from onset to diagnosis and the size of the lesions. How-
ever, PCR alone is more sensitive for patients with lesions equal to
or larger than 3 disk areas (195).

As AH puncture remains an invasive procedure for investiga-
tion, the detection of parasite DNA in whole blood would be an
attractive alternative. However, attempts to demonstrate circulat-
ing DNA during episodes of retinochoroiditis have been success-
ful in a limited amount of cases, mostly in immunocompromised
patients (56). The source of circulating parasites is uncertain, as it
could originate from the eye as well as from other peripheral sites.
In immunocompetent patients, current hypotheses on the patho-
physiology of toxoplasmic retinochoroiditis are in favor of a reac-
tivation of encysted parasites in the retina or the choroid, with
limited dissemination. However, this concept could be questioned
in the near future in the light of parasite strain genotypes and
virulence. Indeed, a case of congenital transmission following a
reactivation of toxoplasmic retinochoroiditis in an immunocom-
petent pregnant woman in Brazil was recently described (15). This
observation shows that parasite redissemination can happen dur-
ing reactivation events and is consistent with the particular viru-
lence associated with genotypes from South America. It could also
explain the unexpected results reported in a recent Brazilian
study, where 7/8 non-HIV-infected patients had a positive PCR
on peripheral blood (305). Extensive studies of larger series are
therefore welcome to validate the prevalence of circulating para-
sites in immunocompetent patients living in South America and
possibly to reconsider the sensitivity of diagnostic tools for these
patients.

HOW TO AVOID OR REDUCE THE BURDEN OF
TOXOPLASMOSIS: PREVENTION AND CONTROL MEASURES

Primary Prevention, or How To Avoid Infection

Hygienic measures are paramount to avoiding infection. Health
education measures to prevent primary T. gondii infection are
listed in Table 5 and are drawn directly from the acquired knowl-
edge of the intrinsic resistance and biological characteristics of the
infective stages of T. gondii. Persons should be advised that they
should wash their hands after contact with raw meat, after garden-
ing or other external activity with contact with soil, and after hav-
ing close contact with a cat. In addition, persons should wash
fruits and vegetables (especially those growing in contact with
soil) thoroughly before eating them raw. If the person owns a cat,
the litter box should be changed every 2 days, preferably by an-
other person, or alternatively, persons should wear a mask and
gloves when changing the litter box. Persons should be encour-
aged to keep their cats inside and feed them only canned or dried
commercial food.

The spread of such measures depends on the health care policy
applied in a given country. Physicians are at the first line to com-
prehensively explain the preventive measures to women who are
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pregnant or plan to be pregnant. Oral counseling should be ac-
companied by written information for optimal retaining of the
information throughout pregnancy. There is evidence to suggest
that health education approaches may help reduce the risk of con-
genital toxoplasmosis, but evaluation studies of educational poli-
cies worldwide are lacking (151). It could be deduced from an
epidemiological case-control study conducted in France that cat-
related prevention measures are probably well known, since cat
owners were not more likely to acquire toxoplasmosis than others
(23). Indeed, cat owners are usually warned of the risk associated
with cleaning the litter box or having close contact with cats or
kittens and take appropriate measures. Conversely, in that study,
the risk for primary acquired infection was highly associated with
the consumption of undercooked meat or with rural living, sug-
gesting acquisition through contaminated soil (gardening or
working in a rural environment) (23). Undercooked meat was the
main risk factor for infection of pregnant women in another Eu-
ropean case-control study, leading those authors to propose the
clear labeling of meat at risk according to farming and processing
methods (61). As freezing meat during at least 3 days at �12°C
usually allows the killing of cysts from pork meat (91), the pur-
chase of frozen meat (at least �20°C) may be recommended to
people who cannot think of eating well-done pieces of beef or
lamb, on the basis that long periods of freezing at low tempera-
tures should kill all cysts.

The risk associated with water consumption is less known and
was recently reviewed by Jones and Dubey (180). More attention

is indeed being given to the consumption of water, particularly
untreated or unfiltered water, in countries where surface water is
the main source of drinking water and where water-filtering sys-
tems are malfunctioning or use water filters with a diameter that is
too large. Several outbreaks of waterborne toxoplasmosis have
been reported both in developing countries (Brazil and India)
(167, 245) and in developed countries (North America and Po-
land) (40), suggesting that prevention measures should now stress
this specific risk and recommend the consumption of mineral
water for pregnant women. Moreover, it has not been excluded
that the ingestion of contaminated water from lakes or rivers dur-
ing recreational activities could be a source of Toxoplasma infec-
tion, which may explain the large proportions of cases of unex-
plained toxoplasmosis in pregnant women, as shown in a study in
the Northern United States (41). From a general point of view,
given the potentially huge contamination of the environment by
oocyst spreading (180), one must keep in mind all hygienic mea-
sures in relation with external activities and should wash hands
thoroughly after gardening or other recreation activities.

An introduction of new prevention messages concerning the
risk due to more recently recognized sources of contamination
(unpasteurized goat’s milk and raw shellfish, etc.) was also pro-
posed (179).

The same guidelines of primary prevention can be given to im-
munocompromised patients who are seronegative, to avoid Toxo-
plasma contamination. Recent knowledge of strain virulence
should be taken into consideration, and these recommendations

TABLE 5 Basis for hygienic measures for prevention of toxoplasmosis

Source of infection Type of risk Prevention measure(s)

Oocysts and cat feces Direct contact with cat feces; oocysts become infectious
only 2–3 days after shedding, shedding usually occurs
only once during a cat’s life, duration of shedding is
about 2 wk, oocysts are killed within 1–2 min by
heating to 55°C–60°C, and oocysts are resistant to
chemical disinfectants such as sodium hypochlorite

Wash hands carefully after stroking a cat, wear
gloves when changing cat litter, change the litter
frequently and wash tray with hot water
(�60°C), avoid putting cat litter in the kitchen,
and feed cats dried or canned food

Oocysts in the environment Soil contact for gardening, playing, or other outdoor
activities; oocysts can survive more than 1 year in a
moist environment at 4°C, 106 days at �10°C, 32
days at 35°C, and 9 days at 40°C

Wash hands thoroughly and brush nails after any
outdoor activities in contact with soil, and wear
gloves for gardening

Consumption of unfiltered water (raw surface water,
reservoir, wells, recreation areas)

Prefer mineral water to tap water (in countries
where the water network is supplied mainly by
surface water)

Oocysts can survive for long periods of time in water
and resist freezing and moderately high water
temperatures, chlorination and ozone treatment, in
seawater, and in various species of shellfish

Avoid raw oysters, clams, and mussels, and avoid
occasional ingestion of water (lakes, rivers)
during recreation activities

Raw vegetables or fruit consumption Thoroughly wash vegetables, fruits, and herbs eaten
raw, especially if they grow close to the ground,
and avoid raw vegetables at restaurants

Tissue cysts in meat Meat consumption or manipulation; any type of meat
may be infected, with sheep, goats, and pigs from
organic outdoor production systems and wild game
being at the most risk; cysts are killed immediately at
67°C and after at least 3 days at ��12°C, depending
on the thickness of the piece of meat; cysts can
survive in refrigerated meat for up to 3 wk, for �11
days at �6.7°C, and for about 4 min at 60°C and 10
min at 50°C

Cook the meat well done (oven, pan) or stew; avoid
microwave cooking; eat meat frozen for at least
�20°C during at least 15 days; and wash hands,
knives, any containers, and table thoroughly after
meat manipulation or cutting
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should now also be provided to travelers who are visiting coun-
tries where atypical strains predominate, even if they were previ-
ously immunized.

Various Approaches for Screening, Prevention, and Control
of Congenital Toxoplasmosis

Screening and treatment of pregnant women to reduce parasite
transmission. Serological screening of pregnant women is not the
rule and differs among countries according to the prevalence of
Toxoplasma and health care policies. The high prevalence (�70%)
observed in France in the 1970s motivated the implementation in
1985 of mandatory prenatal serologic screening during the first 3
months of pregnancy, which was strengthened in 1992 by the im-
plementation of monthly repeated testing of seronegative women
during pregnancy. In Austria and some other European countries
(Belgium, Norway, and Italy, at least in some regions), a retesting
schedule at 3-month intervals has been implemented, whereas
other countries (Poland, Denmark, Sweden, and the United
States) have no prenatal screening program. In Switzerland, where
the seroprevalence is intermediate (about 25%), the Swiss Work-
ing Group on Congenital Toxoplasmosis recently recommended
the abandonment of the surveillance and prevention program,
arguing for the low incidence and morbidity of congenital toxo-
plasmosis in this country, although this recommendation is not
unanimously shared by all teams (311). In the absence of screen-
ing, hygienic measures are the keystone of prevention and should
be largely disseminated to pregnant women. In countries with
prenatal screening policies, serology should be prescribed as soon
as the pregnancy is diagnosed so that the serologic status can be
interpreted unambiguously and prevention measures can be given
to seronegative patients early to avoid infection. Repeated sero-
logic screening offers the option to start a specific treatment as
soon as seroconversion is observed and to propose a prenatal di-
agnosis. However, independently of any critical consideration
about treatment efficacy, there are two limitations to prenatal
screening. First, a consequence of screening is the anxiety gener-
ated by the diagnosis of Toxoplasma infection in the mother, as
highlighted by some authors (118). This anxiety may lead the cou-
ple to prematurely terminate the pregnancy but, on the other
hand, can be greatly lightened in cases of negative amniocentesis
results. Second, other authors reported difficulty in applying sys-
tematic screening and the possible lack of compliance of patients,
limiting the efficacy of health policies (62). In addition, the risk of
adverse events associated with amniocentesis must be weighed
against the risk of fetal transmission associated with the time of
pregnancy when maternal infection occurred. A meta-analysis re-
ported prenatal diagnosis-associated risks of fetal loss ranging
from 0.33% to 0.74% until 2002 and from 0.3 to 0.4% in recent
cohort studies (189), which are lower than the rate of transmission
of parasites during the first trimester of pregnancy but similar to
or higher than the rate of transmission of parasites following peri-
conceptional toxoplasmosis. Therefore, the disease burden of
congenital toxoplasmosis may be diversely appreciated according
to the health care system: the burden of morbidity is expected to
be higher in countries without prenatal screening, but the burden
of mortality is higher in countries with active prenatal screening
(voluntary termination, medical abortion, or fetal loss due to am-
niocentesis) (163). Hence, decisions about the implementation of
prenatal screening in a given country should be carefully consid-

ered and based on prevalence data, disease burden, technical re-
sources, and diagnostic costs.

As part of primary prevention, the aim of diagnosing maternal
infection through serologic screening is to treat the mother to
avoid vertical transmission. Spiramycin has been used in France
since the 1960s for the primary prevention of congenital toxoplas-
mosis (141), but a combination of pyrimethamine-sulfonamide
in association with folinic acid can also be used after the first
trimester of pregnancy. The rationale for the use of spiramycin
relies on reducing the parasite burden in the mother (mainly
bloodstream and placenta), since this molecule hardly crosses the
placental barrier (157), whereas pyrimethamine-sulfonamide
does so efficiently, as demonstrated by comparative dosages of
these drugs in maternal and cord blood sera at delivery (55). How-
ever, over the last decade, contradictory results on treatment effi-
cacy drawn from several epidemiological studies or meta-analyses
of retrospective cohorts have opened a large debate questioning
the pertinence of screening. A systematic review by Wallon et al.
(334) included for analysis 9 out of 2,591 papers on congenital
toxoplasmosis and concluded that there was an absence of a clear
effect of treatment on reducing vertical transmission. However,
some important parameters were lacking in some of those papers,
i.e., a prolonged follow-up of newborns for �6 months (one
study), the precise delay between maternal infection and the onset
of treatment (all 9 studies), and the lack of adequate untreated
controls, thus limiting the reliability of general conclusions on
treatment efficacy. The delay to treatment is indeed a key point for
the evaluation of treatment efficacy, as is an adjustment for the age
of gestation at the time of maternal infection. The EMSCOT (Eu-
ropean Multicenter Study on Congenital Toxoplasmosis) (145), a
large meta-analysis of 1,208 mother-child pairs from 11 centers,
found no effect of treatment on reducing parasite transmission,
but those authors did not exclude that their analysis could lack
power. Indeed, there are several biases in the interpretations of
results from this large-cohort study, such as differences in treat-
ment regimens, the low number of untreated controls (only 106
out of 1,208 patients), and, again, the possible long delay for treat-
ment in cohorts from countries with serologic screening at
3-month intervals. In addition, in that study, the median treat-
ment delay for women first treated with spiramycin was about 4
weeks, whereas it was �8 weeks for those first treated with pyrim-
ethamine-sulfonamide, which could contribute to the decrease in the
overall treatment efficacy, since the most powerful drug combination
was given with a greater delay. Two other retrospective cohort studies
failed to detect an effect of treatment on reducing parasite transmis-
sion, whatever the delay to treatment (128, 147). Nevertheless, a more
recent large meta-analysis from the SYROCOT (Systematic Review
on Congenital Toxoplasmosis) study group (318) including 26 co-
horts and 1,745 infected mothers (307 untreated) found weak evi-
dence that treatment that started within 3 weeks of seroconversion
reduced mother-to-child transmission compared with treatment
started after �8 weeks. All authors agreed to conclude that definitive
conclusions on prenatal treatment efficacy should rely on a
large randomized controlled trial. However, due to ethical con-
siderations, a trial including an untreated group cannot be un-
dertaken in countries where screening and prevention are rou-
tine. To answer, at least partly, the debate on maternal
treatment, a 3-year French national clinical trial (Toxogest
[http://clinicaltrials.gov/ct2/show/NCT01189448]) was started in
2010 to compare the treatment efficacies of spiramycin and pyri-
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methamine-sulfadiazine and should include 330 patients. The
analysis of clinical outcomes in newborns and of transmission
rates in both groups should help to answer the question of the role
of both the delay of treatment and the therapy used according to
the stage of pregnancy.

Prenatal screening and treatment to limit fetal damage. Apart
from decreasing vertical transmission, the associated goal of pre-
natal treatment is to reduce fetal damage or newborn sequelae,
provided that transmission has occurred. The efficacy of prenatal
treatment to reduce clinical manifestations at birth can be evalu-
ated with cohorts of patients benefiting from prenatal screening,
but as discussed above, the evaluation often suffers from the lack
of untreated controls and from the necessity to precisely date the
maternal infection, since the severity of fetal infection, and, pro-
portionally, the capacity for treatment to reduce sequelae, de-
pends on the term of gestation at seroconversion. Again, different
studies have yielded contrasting conclusions. The SYROCOT
study found no evidence that prenatal treatment reduced the risk
of clinical manifestations (318). However, two recent cohort stud-
ies showed that (i) any prenatal treatment (spiramycin or pyrim-
ethamine-sulfonamide) reduced the risk of serious neurological
sequelae (64) and (ii) any prenatal treatment reduced the risk of
intracranial lesions, provided that treatment was given within the
first 4 weeks following maternal infection (156). In addition, in the
prospective EMSCOT (64), the number of infected fetuses needed
to be treated to prevent 1 case was only 3 for maternal infections at
10 weeks of gestation. These findings hence support prenatal
screening and are in agreement with the observation that the sys-
tematic screening and treatment of pregnant women have de-
creased the rate of severe congenital infections in France, where
the rate of asymptomatic infected neonates is about 85% at birth
(328). However, due to the lack of a national surveillance system at
the onset of the prevention program, it is not possible to quantify
precisely the gain in terms of disease burden since then. The im-
pact of treatment on eye sequelae is less clear. Some studies did not
find any beneficial effect of prenatal treatment on the number of
eye lesions or episodes of recurrence after birth (131, 318),
whereas others did (128, 190). Kieffer et al. reported on a series of
300 infected infants and described that the risk of developing a
first retinochoroiditis before the age of 2 years was associated with
a delay of �8 weeks between maternal infection and prenatal
treatment (190). Wallon et al. reported the longitudinal follow-up
of 327 infected infants (275 of whom were treated antenatally)
who were treated with pyrimethamine and sulfadiazine during
their first year of life (333). During a median follow-up time of 6
years, 24% of children developed at least one lesion of chorioreti-
nitis, and 29% had one or more episodes of recurrence before the
age of 10 years; 63% had normal visual acuity. However, from the
data presented, it cannot be deduced how many of those with
visual impairment were not treated antenatally.

Postnatal screening of neonates to promote early treatment.
The postnatal screening of neonates has been implemented in
some countries where prenatal screening was not considered to be
a health priority, as is the case in Sweden, Denmark, Poland, and
the United States (Massachusetts). The concept of newborn
screening for early treatment to reduce long-term eye sequelae has
been prompted by American cohort studies, which showed unex-
pected favorable outcomes for most infants who were treated con-
tinuously for 1 year with pyrimethamine-sulfadiazine, despite se-
vere manifestations at birth, compared to untreated infants from

previous series (159, 220, 221). Phan et al. (256) reported on 28
children with congenital toxoplasmosis who were diagnosed late
and were not treated during their first year of life. Those authors
described new chorioretinal lesions in 72% of these children dur-
ing a mean follow-up time of 5.7 years; 52% of the children devel-
oped new eye lesions at an age of �10 years. These data are in
contrast with data for European cohorts, where eye prognoses
seemed better (45, 333). In the French series described by Kieffer
et al. (190), only 12% of 300 infected infants treated for 1 year
developed a first retinochoroidal lesion until the age of 2 years.
However, French series present a confounding factor limiting
analyses of the efficacy of postnatal treatment, since most babies
also received prenatal treatment. Therefore, the answer regarding
the effect of early postnatal treatment should come from countries
where decision makers chose the option of neonatal screening
only. But how does one obtain an adequate untreated control
group? Such a definitive evaluation also needs a randomized con-
trolled trial, with the same ethical limitations as those for prenatal
treatment.

Freeman et al. observed a low incidence of retinochoroiditis
among 281 infected infants (18%) identified by prenatal or post-
natal screening and proposed a strategy of postnatal therapy based
on clinical severity and prognosis (131). They suggested a short-
course treatment (3 months) or no treatment for asymptomatic
newborns who are at a low risk of developing retinochoroiditis but
recommended treatment and careful monitoring of children with
early eye manifestations and/or severe disease (intracranial le-
sions, serious neurological sequelae, and hepatosplenomegaly),
who have a higher risk for new or worsening lesions. In Denmark,
intervention studies since the onset of the national neonatal
screening program estimated that the low burden of disease (1.6
per 10,000 live-born infants) and the lack of evidence of postnatal
treatment efficacy did not justify the continuation of neonatal
screening; hence, the Danish program was stopped in 2007 (287).
The Danish protocol was based on a 3-month treatment of in-
fected newborns, which failed to prevent the development of reti-
nochoroidal lesions in children with or without previously de-
tected lesions (296). However, it cannot be excluded that the
duration of treatment may have been too short, particularly for
symptomatic newborns at birth.

Screening for and Chemoprophylaxis of Toxoplasmosis in
Immunocompromised Patients

Primary prevention aims to screen targeted patients to identify
those who are at risk of acquiring a primary Toxoplasma infection,
either naturally, i.e., oral infection, which can be prevented by
hygienic measures, or through the transplantation of an organ
from a seropositive donor, which can be prevented by chemopro-
phylaxis.

Secondary prevention relies on chemoprophylaxis and con-
cerns immunocompromised patients who are seropositive for
Toxoplasma, i.e., who have already acquired Toxoplasma infection
in the distant past and are likely to have a reactivation of infection,
according to the degree of immunodeficiency.

As for congenital toxoplasmosis, there is no consensus about sero-
logic screening for immunodeficient patients. For HIV-infected pa-
tients, annual serologic testing is usually performed for Toxoplasma-
seronegative patients to verify the immune status against the parasite,
particularly in the case of an onset of clinical manifestations suggest-
ing evolutive toxoplasmosis. Usually, practitioners refer to national
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guidelines from scientific societies or national agencies. French and
American recommendations can be found online at http://www
.infectiologie.com/site/consensus_recos.php and http://aidsinfo.nih
.gov/contentfiles/Adult_OI000999.pdf, respectively, but others are
also available. The prophylaxis of TE in Toxoplasma-seropositive
AIDS patients is rather consensual, and trimethoprim-sulfame-
thoxazole (TMP-SMX) prophylaxis should be administered when
the CD4� T cell count falls below 100 cells/�l. A daily dose of the
double-strength tablet (160 mg– 800 mg) of TMP-SMX is rec-
ommended as the preferred regimen, since it is also suited for
Pneumocystis jirovecii (formerly carinii) pneumonia (PCP)
prophylaxis. TMP-SMX (160 mg– 800 mg) three times weekly
or TMP-SMX (80 mg– 400 mg) daily are alternatives to improve
tolerance. If patients cannot tolerate TMP-SMX, the recom-
mended alternative is dapsone-pyrimethamine plus folinic acid,
which is also effective against PCP. Treatment with pyrimetham-
ine-sulfadoxine twice weekly also proved to be effective (298), but
cutaneous adverse effects limit its use. Atovaquone with or with-
out pyrimethamine-folinic acid can also be considered, provided
that it is properly absorbed in the digestive tract (307). Prophy-
laxis should be discontinued for patients who have responded to
HAART with an increase in CD4� cells counts to �200 cells/�l for
at least 3 months. Toxoplasma-seronegative persons should be re-
tested annually for IgG antibody to Toxoplasma to determine
whether they have seroconverted and are therefore at risk for TE.

The decision to screen for Toxoplasma antibodies in transplant
patients varies highly among countries and is again explained
mostly by the differences in the incidence rates of toxoplasmosis
(81). A recent Spanish case-control study showed that a negative
serostatus prior to transplantation was the only independent risk
factor for toxoplasmosis in SOT patients (125), confirming that
primary infection is more frequently observed for these patients.
In about half of those patients, toxoplasmosis was due to a D�/R�

mismatch, emphasizing the need for primary prevention through
both donor/recipient screenings and hygienic measures. In
France, serologic screening is mandatory for the organ donor and
is strongly recommended (in practice, it is always done) for the
recipient, whereas in the United States, the serologic screening of
donors and recipients depends largely on the transplant center.
Determination of the serology of the donor is also routinely per-
formed in 11 European countries (81). Knowledge of the serologic
status of both the recipient and donor allows the start of primary
chemoprophylaxis at the time of transplantation in the case of a
mismatch, particularly for heart transplant patients. However, it
was argued that in countries with a low Toxoplasma seropreva-
lence, such an occurrence is rare and that the systemic use of
cotrimoxazole for the prevention of Pneumocystis pneumonia
counterbalances the risk of primary Toxoplasma infection, at least
in the first months following transplantation (154). If chemopro-
phylaxis is usually the rule for heart transplant patients in the case
of a known mismatch, there is no consensus concerning the du-
ration, which usually does not exceed 6 months. After prophylaxis
is stopped, some heart transplant centers perform serological
screening at 6-month intervals, with the aim to detect a potential
seroconversion or reactivation. However, it must be acknowl-
edged that serologic reactivation is rarely associated with clinical
reactivation but may prompt further investigation when associ-
ated with clinical signs.

TMP-SMX (160 mg– 800 mg) daily or three times a week is also
the first-line drug regimen to prevent toxoplasmosis in SOT pa-

tients who also need to be protected against PCP (81, 154, 234). In
the case of intolerance, pyrimethamine alone (25 mg/day) can be
an alternative for T. gondii prophylaxis (234, 339), and aerosolized
pentamidine can be used for Pneumocystis pneumonia. If prophy-
laxis must be stopped for any reason, the onset of clinical signs
must prompt further investigations based on CT scans and para-
site detection by PCR (248).

For HSCT patients, the risk of donor-acquired infection is neg-
ligible, as toxoplasmosis results mainly from a reactivation of a
past infection in these patients. TMP-SMX is also the drug com-
monly used to prevent Pneumocystis pneumonia and toxoplasmo-
sis in allogeneic transplant recipients, but its toxicity usually re-
strains its use after the first month following the graft. It must be
kept in mind that patients receiving aerosolized pentamidine for
Pneumocystis pneumonia prophylaxis are not protected against
Toxoplasma infection and should be carefully monitored. Pre-
transplant serology should be performed for HSCT patients to
evaluate the potential risk of reactivation, but serology is far less
reliable after a graft due to profound immunosuppression. As the
disease is rapidly progressive, systematic screening by repeated
PCRs of peripheral blood has been proposed for the early weeks or
months following transplantation (136, 215). In a study by Mar-
tino et al. (215), 16 of 106 (15%) patients had at least one positive
PCR result, which prompted the initiation of preemptive therapy.
Another prospective study found positive PCR results for 12.5%
of Toxoplasma-seropositive HSCT patients; all were febrile, and
the PCR signal disappeared after preemptive TMP-SMX therapy
(44). Recently, Cavattoni et al. reported the usefulness of PCR to
diagnose ocular and cerebral toxoplasmosis in three allogeneic
HSCT patients who underwent pentamidine prophylaxis (52),
underlining the heterogeneity of chemoprophylaxis practices in
various countries. Repeated PCR testing can be also performed to
monitor solid-organ transplantation in the case of a mismatch,
especially for heart transplant patients, but biological diagnosis is
guided mostly by the onset of clinical symptoms (39, 135).

Secondary chemoprophylaxis should be given after a first epi-
sode of severe clinical manifestations and should rely on a bith-
erapy. TMP-SMX (30) or pyrimethamine-sulfadiazine (25 mg–2 g
daily or 50 mg–2 g three times a week) has been proposed as a
maintenance therapy (260).

CONCLUSION

Substantial advancements in the field of Toxoplasma research
have occurred in the past 20 years. Basic research in molecular
and cell biology benefited from the development of high-
throughput genomic and proteomic technologies and new
imaging techniques. Another review will be necessary to sum-
marize these advances. However, in the meantime, epidemio-
logical studies also gained more importance. The emergence of
Toxoplasma as a waterborne disease in several countries has
stimulated environmental research. An ecological and inte-
grated approach was developed for a better understanding of
the complex circulation of Toxoplasma between its multiple
hosts and the environment and, finally, of the risk factors for
human infection. Thanks to the isolation and genotyping of
strains from various animal species in different continents, the
diversity of T. gondii was revealed. We now know that this
unique species is not totally identical around the world. The
pathogenic role associated with some of these genotypes has
been well studied in experimental models. These models al-
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lowed the detection of virulence-associated genes. Even if it is
more difficult to formally establish the role of the infecting
genotype in human toxoplasmosis due to the difficulty in iso-
lating strains from patients and due to other pathogenesis-
associated factors, such as host immune status and genetic
background, it appears now that the description of clinical as-
pects of toxoplasmosis must be unraveled in the light of Toxo-
plasma genotypes and of their geographical distribution. How-
ever, the practical consequences of these epidemiological and
genetic advances for diagnosis strategies and for the manage-
ment of human toxoplasmosis still need to be evaluated. Avail-
able tools for the biological diagnosis of toxoplasmosis allow
diagnosis in most cases, but the development of other biomark-
ers should be helpful for the most difficult cases, for instance,
for ocular or cerebral localizations.
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